Step * of Lemma member-useable-atoms

s:SES
  (ActionsDisjoint
   (∀es:EO+(Info). ∀e:E. ∀a:Atom1.
        ((a ∈ UseableAtoms(e))
        ⇐⇒ ((↑e ∈b Rcv) ∧ (a ∈ sdata-atoms(Rcv(e))))
            ∨ ((↑e ∈b Decrypt) ∧ (a ∈ sdata-atoms(plainText(e))))
            ∨ ((↑e ∈b New) ∧ (a New(e) ∈ Atom1))
            ∨ ((↑e ∈b Sign) ∧ (a signature(e) ∈ Atom1))
            ∨ ((↑e ∈b Encrypt) ∧ (a cipherText(e) ∈ Atom1)))))
BY
(RepeatFor ((D THENA Auto))
   THEN Unfold `ses-useable-atoms` 0
   THEN Unfold `ses-disjoint` 2
   THEN ((InstHyp [⌈es⌉2⋅ THENM Thin 2) THENA Auto)
   THEN (D -1 THEN (InstHyp [⌈e⌉(-1)⋅ THENA Auto) THEN Thin (-2))
   THEN SplitAndHyps
   THEN Repeat ((WeakAutoSplit THEN ThinTrivial THEN Try (Arith)))
   THEN ((RepeatFor (D 0) THENA Auto)
         THEN SplitOrHyps
         THEN SplitAndHyps
         THEN ThinTrivial
         THEN Try (Arith)
         THEN Auto
         THEN AllHyps h.(RWO "member_singleton" THEN Auto) ⋅)⋅}


Latex:



Latex:
\mforall{}s:SES
    (ActionsDisjoint
    {}\mRightarrow{}  (\mforall{}es:EO+(Info).  \mforall{}e:E.  \mforall{}a:Atom1.
                ((a  \mmember{}  UseableAtoms(e))
                \mLeftarrow{}{}\mRightarrow{}  ((\muparrow{}e  \mmember{}\msubb{}  Rcv)  \mwedge{}  (a  \mmember{}  sdata-atoms(Rcv(e))))
                        \mvee{}  ((\muparrow{}e  \mmember{}\msubb{}  Decrypt)  \mwedge{}  (a  \mmember{}  sdata-atoms(plainText(e))))
                        \mvee{}  ((\muparrow{}e  \mmember{}\msubb{}  New)  \mwedge{}  (a  =  New(e)))
                        \mvee{}  ((\muparrow{}e  \mmember{}\msubb{}  Sign)  \mwedge{}  (a  =  signature(e)))
                        \mvee{}  ((\muparrow{}e  \mmember{}\msubb{}  Encrypt)  \mwedge{}  (a  =  cipherText(e))))))


By


Latex:
(RepeatFor  5  ((D  0  THENA  Auto))
  THEN  Unfold  `ses-useable-atoms`  0
  THEN  Unfold  `ses-disjoint`  2
  THEN  ((InstHyp  [\mkleeneopen{}es\mkleeneclose{}]  2\mcdot{}  THENM  Thin  2)  THENA  Auto)
  THEN  (D  -1  THEN  (InstHyp  [\mkleeneopen{}e\mkleeneclose{}]  (-1)\mcdot{}  THENA  Auto)  THEN  Thin  (-2))
  THEN  SplitAndHyps
  THEN  Repeat  ((WeakAutoSplit  THEN  ThinTrivial  THEN  Try  (Arith)))
  THEN  ((RepeatFor  2  (D  0)  THENA  Auto)
              THEN  SplitOrHyps
              THEN  SplitAndHyps
              THEN  ThinTrivial
              THEN  Try  (Arith)
              THEN  Auto
              THEN  AllHyps  h.(RWO  "member\_singleton"  h  THEN  Auto)  \mcdot{})\mcdot{})




Home Index