Nuprl Lemma : rank-comm
∀[P:pi_term()]. ∀[pre:pi_prefix()].  (pi-rank(picomm(pre;P)) = (pi-rank(P) + 1) ∈ ℕ)
Proof
Definitions occuring in Statement : 
pi-rank: pi-rank(p)
, 
picomm: picomm(pre;body)
, 
pi_term: pi_term()
, 
pi_prefix: pi_prefix()
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Lemmas : 
zero-le-nat, 
pi-rank_wf, 
picomm_wf, 
nat_wf, 
le_wf, 
pi_prefix_wf, 
pi_term_wf
Latex:
\mforall{}[P:pi\_term()].  \mforall{}[pre:pi\_prefix()].    (pi-rank(picomm(pre;P))  =  (pi-rank(P)  +  1))
Date html generated:
2015_07_23-AM-11_33_08
Last ObjectModification:
2015_01_29-AM-00_54_12
Home
Index