Nuprl Lemma : rec-process_wf_pi_simple_state
∀[S:Type]. ∀[s0:S]. ∀[next:∩T:{T:Type| pi-process() ⊆r T} . (S ─→ piM(T) ─→ (S × LabeledDAG(Id × (Com(T.piM(T)) T))))].
  (RecProcess(s0;s,m.next[s;m]) ∈ pi-process())
Proof
Definitions occuring in Statement : 
pi-process: pi-process()
, 
piM: piM(T)
, 
Com: Com(P.M[P])
, 
ldag: LabeledDAG(T)
, 
rec-process: RecProcess(s0;s,m.next[s; m])
, 
Id: Id
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
isect: ∩x:A. B[x]
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
rec-process_wf_pi, 
continuous-constant, 
piM_wf, 
subtype_rel_wf, 
pi-process_wf, 
ldag_wf, 
Id_wf, 
Com_wf
Latex:
\mforall{}[S:Type].  \mforall{}[s0:S].  \mforall{}[next:\mcap{}T:\{T:Type|  pi-process()  \msubseteq{}r  T\} 
                                                          (S  {}\mrightarrow{}  piM(T)  {}\mrightarrow{}  (S  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T))))].
    (RecProcess(s0;s,m.next[s;m])  \mmember{}  pi-process())
Date html generated:
2015_07_23-AM-11_36_23
Last ObjectModification:
2015_01_29-AM-07_39_40
Home
Index