Nuprl Lemma : rec-process_wf_pi_simple_state

[S:Type]. ∀[s0:S]. ∀[next:∩T:{T:Type| pi-process() ⊆T} (S ─→ piM(T) ─→ (S × LabeledDAG(Id × (Com(T.piM(T)) T))))].
  (RecProcess(s0;s,m.next[s;m]) ∈ pi-process())


Proof




Definitions occuring in Statement :  pi-process: pi-process() piM: piM(T) Com: Com(P.M[P]) ldag: LabeledDAG(T) rec-process: RecProcess(s0;s,m.next[s; m]) Id: Id subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T set: {x:A| B[x]}  apply: a isect: x:A. B[x] function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  rec-process_wf_pi continuous-constant piM_wf subtype_rel_wf pi-process_wf ldag_wf Id_wf Com_wf

Latex:
\mforall{}[S:Type].  \mforall{}[s0:S].  \mforall{}[next:\mcap{}T:\{T:Type|  pi-process()  \msubseteq{}r  T\} 
                                                          (S  {}\mrightarrow{}  piM(T)  {}\mrightarrow{}  (S  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T))))].
    (RecProcess(s0;s,m.next[s;m])  \mmember{}  pi-process())



Date html generated: 2015_07_23-AM-11_36_23
Last ObjectModification: 2015_01_29-AM-07_39_40

Home Index