Nuprl Lemma : rec-process_wf_pi

[S:Type ─→ Type]
  ∀[s0:S[pi-process()]]. ∀[next:∩T:{T:Type| pi-process() ⊆T} 
                                  (S[piM(T) ─→ (T × LabeledDAG(Id × (Com(T.piM(T)) T)))]
                                  ─→ piM(T)
                                  ─→ (S[T] × LabeledDAG(Id × (Com(T.piM(T)) T))))].
    (RecProcess(s0;s,m.next[s;m]) ∈ pi-process()) 
  supposing Continuous+(T.S[T])


Proof




Definitions occuring in Statement :  pi-process: pi-process() piM: piM(T) Com: Com(P.M[P]) ldag: LabeledDAG(T) rec-process: RecProcess(s0;s,m.next[s; m]) Id: Id strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  apply: a isect: x:A. B[x] function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  rec-process_wf_Process piM_wf piM-continuous ldag_wf Id_wf Com_wf subtype_rel_wf Process_wf strong-type-continuous_wf

Latex:
\mforall{}[S:Type  {}\mrightarrow{}  Type]
    \mforall{}[s0:S[pi-process()]].  \mforall{}[next:\mcap{}T:\{T:Type|  pi-process()  \msubseteq{}r  T\} 
                                                                    (S[piM(T)  {}\mrightarrow{}  (T  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T)))]
                                                                    {}\mrightarrow{}  piM(T)
                                                                    {}\mrightarrow{}  (S[T]  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T))))].
        (RecProcess(s0;s,m.next[s;m])  \mmember{}  pi-process()) 
    supposing  Continuous+(T.S[T])



Date html generated: 2015_07_23-AM-11_36_21
Last ObjectModification: 2015_01_29-AM-07_39_49

Home Index