Nuprl Lemma : rec-process_wf_pi
∀[S:Type ─→ Type]
  ∀[s0:S[pi-process()]]. ∀[next:∩T:{T:Type| pi-process() ⊆r T} 
                                  (S[piM(T) ─→ (T × LabeledDAG(Id × (Com(T.piM(T)) T)))]
                                  ─→ piM(T)
                                  ─→ (S[T] × LabeledDAG(Id × (Com(T.piM(T)) T))))].
    (RecProcess(s0;s,m.next[s;m]) ∈ pi-process()) 
  supposing Continuous+(T.S[T])
Proof
Definitions occuring in Statement : 
pi-process: pi-process()
, 
piM: piM(T)
, 
Com: Com(P.M[P])
, 
ldag: LabeledDAG(T)
, 
rec-process: RecProcess(s0;s,m.next[s; m])
, 
Id: Id
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
isect: ∩x:A. B[x]
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
rec-process_wf_Process, 
piM_wf, 
piM-continuous, 
ldag_wf, 
Id_wf, 
Com_wf, 
subtype_rel_wf, 
Process_wf, 
strong-type-continuous_wf
Latex:
\mforall{}[S:Type  {}\mrightarrow{}  Type]
    \mforall{}[s0:S[pi-process()]].  \mforall{}[next:\mcap{}T:\{T:Type|  pi-process()  \msubseteq{}r  T\} 
                                                                    (S[piM(T)  {}\mrightarrow{}  (T  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T)))]
                                                                    {}\mrightarrow{}  piM(T)
                                                                    {}\mrightarrow{}  (S[T]  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T))))].
        (RecProcess(s0;s,m.next[s;m])  \mmember{}  pi-process()) 
    supposing  Continuous+(T.S[T])
Date html generated:
2015_07_23-AM-11_36_21
Last ObjectModification:
2015_01_29-AM-07_39_49
Home
Index