Step
*
of Lemma
rec-process_wf_pi
∀[S:Type ─→ Type]
∀[s0:S[pi-process()]]. ∀[next:∩T:{T:Type| pi-process() ⊆r T}
(S[piM(T) ─→ (T × LabeledDAG(Id × (Com(T.piM(T)) T)))]
─→ piM(T)
─→ (S[T] × LabeledDAG(Id × (Com(T.piM(T)) T))))].
(RecProcess(s0;s,m.next[s;m]) ∈ pi-process())
supposing Continuous+(T.S[T])
BY
{ (Unfold `pi-process` 0 THEN Auto THEN Using [`S',⌈S⌉] (BLemma `rec-process_wf_Process`)⋅ THEN Auto) }
Latex:
Latex:
\mforall{}[S:Type {}\mrightarrow{} Type]
\mforall{}[s0:S[pi-process()]]. \mforall{}[next:\mcap{}T:\{T:Type| pi-process() \msubseteq{}r T\}
(S[piM(T) {}\mrightarrow{} (T \mtimes{} LabeledDAG(Id \mtimes{} (Com(T.piM(T)) T)))]
{}\mrightarrow{} piM(T)
{}\mrightarrow{} (S[T] \mtimes{} LabeledDAG(Id \mtimes{} (Com(T.piM(T)) T))))].
(RecProcess(s0;s,m.next[s;m]) \mmember{} pi-process())
supposing Continuous+(T.S[T])
By
Latex:
(Unfold `pi-process` 0 THEN Auto THEN Using [`S',\mkleeneopen{}S\mkleeneclose{}] (BLemma `rec-process\_wf\_Process`)\mcdot{} THEN Auto)
Home
Index