Nuprl Lemma : rec-process_wf_Process

[S,M:Type ─→ Type].
  (∀[s0:S[Process(T.M[T])]]. ∀[next:∩T:{T:Type| Process(T.M[T]) ⊆T} 
                                      (S[M[T] ─→ (T × LabeledDAG(Id × (Com(T.M[T]) T)))]
                                      ─→ M[T]
                                      ─→ (S[T] × LabeledDAG(Id × (Com(T.M[T]) T))))].
     (RecProcess(s0;s,m.next[s;m]) ∈ Process(T.M[T]))) supposing 
     (Continuous+(T.M[T]) and 
     Continuous+(T.S[T]))


Proof




Definitions occuring in Statement :  Process: Process(P.M[P]) Com: Com(P.M[P]) ldag: LabeledDAG(T) rec-process: RecProcess(s0;s,m.next[s; m]) Id: Id strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  apply: a isect: x:A. B[x] function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  rec-process_wf ldag_wf Id_wf Com_wf continuous-ldag strong-continuous-product continuous-constant subtype_rel_wf Process_wf strong-type-continuous_wf strong-continuous-isect2 isect2_wf tag-case_wf unit_wf2 strong-continuous-tag-case continuous-id

Latex:
\mforall{}[S,M:Type  {}\mrightarrow{}  Type].
    (\mforall{}[s0:S[Process(T.M[T])]].  \mforall{}[next:\mcap{}T:\{T:Type|  Process(T.M[T])  \msubseteq{}r  T\} 
                                                                            (S[M[T]  {}\mrightarrow{}  (T  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.M[T])  T)))]
                                                                            {}\mrightarrow{}  M[T]
                                                                            {}\mrightarrow{}  (S[T]  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.M[T])  T))))].
          (RecProcess(s0;s,m.next[s;m])  \mmember{}  Process(T.M[T])))  supposing 
          (Continuous+(T.M[T])  and 
          Continuous+(T.S[T]))



Date html generated: 2015_07_23-AM-11_07_14
Last ObjectModification: 2015_01_29-AM-00_10_14

Home Index