Nuprl Lemma : rec-process_wf

[S,M,E:Type ─→ Type].
  (∀[s0:S[process(P.M[P];P.E[P])]]. ∀[next:∩T:{T:Type| process(P.M[P];P.E[P]) ⊆T} 
                                             (S[M[T] ─→ (T × E[T])] ─→ M[T] ─→ (S[T] × E[T]))].
     (RecProcess(s0;s,m.next[s;m]) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(T.E[T]) and 
     Continuous+(T.M[T]) and 
     Continuous+(T.S[T]))


Proof




Definitions occuring in Statement :  rec-process: RecProcess(s0;s,m.next[s; m]) process: process(P.M[P];P.E[P]) strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  isect: x:A. B[x] function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  fix_wf_corec_parameter3 top_wf subtype_rel_wf corec_wf bool_wf process_wf strong-type-continuous_wf
\mforall{}[S,M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[s0:S[process(P.M[P];P.E[P])]].  \mforall{}[next:\mcap{}T:\{T:Type|  process(P.M[P];P.E[P])  \msubseteq{}r  T\} 
                                                                                          (S[M[T]  {}\mrightarrow{}  (T  \mtimes{}  E[T])]  {}\mrightarrow{}  M[T]  {}\mrightarrow{}  (S[T]  \mtimes{}  E[T]))].
          (RecProcess(s0;s,m.next[s;m])  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T])  and 
          Continuous+(T.S[T]))



Date html generated: 2015_07_17-AM-11_19_52
Last ObjectModification: 2015_01_28-AM-07_36_29

Home Index