Nuprl Lemma : fix_wf_corec_parameter3
∀[F,A:Type ⟶ Type].
∀[G:Top ⟶ Top ⟶ Top ⋂ ⋂T:{T:Type| corec(T.F[T]) ⊆r T} . ((A[T] ⟶ T) ⟶ A[F[T]] ⟶ F[T])]. ∀[a:A[corec(T.F[T])]].
(fix(G) a ∈ corec(T.F[T]))
supposing Continuous+(T.A[T])
Proof
Definitions occuring in Statement :
corec: corec(T.F[T])
,
strong-type-continuous: Continuous+(T.F[T])
,
isect2: T1 ⋂ T2
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
apply: f a
,
fix: fix(F)
,
isect: ⋂x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
corec: corec(T.F[T])
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
strong-type-continuous: Continuous+(T.F[T])
,
type-continuous: Continuous(T.F[T])
,
isect2: T1 ⋂ T2
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
bfalse: ff
,
top: Top
,
nat: ℕ
,
prop: ℙ
Lemmas referenced :
fix_wf_corec2',
continuous-function,
continuous-id,
subtype_rel_self,
nat_wf,
isect2_subtype_rel3,
top_wf,
subtype_rel_wf,
corec_wf,
bool_wf,
primrec_wf,
int_seg_wf,
isect2_wf,
strong-type-continuous_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
isect_memberEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
functionEquality,
applyEquality,
universeEquality,
independent_isectElimination,
hypothesis,
isectEquality,
cumulativity,
unionElimination,
equalityElimination,
instantiate,
setEquality,
setElimination,
rename,
because_Cache,
inrFormation,
equalityTransitivity,
equalitySymmetry,
functionExtensionality,
voidElimination,
voidEquality,
natural_numberEquality,
axiomEquality
Latex:
\mforall{}[F,A:Type {}\mrightarrow{} Type].
\mforall{}[G:Top {}\mrightarrow{} Top {}\mrightarrow{} Top \mcap{} \mcap{}T:\{T:Type| corec(T.F[T]) \msubseteq{}r T\} . ((A[T] {}\mrightarrow{} T) {}\mrightarrow{} A[F[T]] {}\mrightarrow{} F[T])].
\mforall{}[a:A[corec(T.F[T])]].
(fix(G) a \mmember{} corec(T.F[T]))
supposing Continuous+(T.A[T])
Date html generated:
2019_06_20-PM-00_36_56
Last ObjectModification:
2018_08_07-PM-03_16_52
Theory : co-recursion
Home
Index