Nuprl Lemma : isect2_subtype_rel3

[A,B,C:Type].  A ⋂ B ⊆supposing (A ⊆C) ∨ (B ⊆C)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a or: P ∨ Q subtype_rel: A ⊆B prop:
Lemmas referenced :  or_wf subtype_rel_wf subtype_rel_transitivity isect2_wf isect2_subtype_rel isect2_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin sqequalRule axiomEquality hypothesis lemma_by_obid isectElimination hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_isectElimination

Latex:
\mforall{}[A,B,C:Type].    A  \mcap{}  B  \msubseteq{}r  C  supposing  (A  \msubseteq{}r  C)  \mvee{}  (B  \msubseteq{}r  C)



Date html generated: 2016_05_13-PM-03_58_10
Last ObjectModification: 2015_12_26-AM-10_51_07

Theory : bool_1


Home Index