Nuprl Lemma : isect2_wf
∀[T1,T2:Type].  (T1 ⋂ T2 ∈ Type)
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
isect2: T1 ⋂ T2
Lemmas referenced : 
bool_wf, 
ifthenelse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
extract_by_obid, 
hypothesis, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType
Latex:
\mforall{}[T1,T2:Type].    (T1  \mcap{}  T2  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_32_07
Last ObjectModification:
2018_09_26-AM-11_28_12
Theory : bool_1
Home
Index