Nuprl Lemma : isect2_wf

[T1,T2:Type].  (T1 ⋂ T2 ∈ Type)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T isect2: T1 ⋂ T2
Lemmas referenced :  bool_wf ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule isectEquality extract_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination hypothesisEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType

Latex:
\mforall{}[T1,T2:Type].    (T1  \mcap{}  T2  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_32_07
Last ObjectModification: 2018_09_26-AM-11_28_12

Theory : bool_1


Home Index