Nuprl Lemma : isect2_subtype_rel
∀[A,B:Type].  (A ⋂ B ⊆r A)
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
isect2_decomp, 
isect2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_pairFormation, 
sqequalRule, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B:Type].    (A  \mcap{}  B  \msubseteq{}r  A)
Date html generated:
2016_05_13-PM-03_58_06
Last ObjectModification:
2015_12_26-AM-10_51_31
Theory : bool_1
Home
Index