Nuprl Lemma : isect2_decomp
∀[t1,t2:Type]. ∀[x:t1 ⋂ t2].  ((x ∈ t1) ∧ (x ∈ t2))
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
isect2: T1 ⋂ T2
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
Lemmas referenced : 
isect2_wf, 
subtype_rel_self, 
btrue_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
Error :inhabitedIsType, 
universeEquality, 
applyEquality
Latex:
\mforall{}[t1,t2:Type].  \mforall{}[x:t1  \mcap{}  t2].    ((x  \mmember{}  t1)  \mwedge{}  (x  \mmember{}  t2))
Date html generated:
2019_06_20-AM-11_32_09
Last ObjectModification:
2018_09_26-AM-11_28_14
Theory : bool_1
Home
Index