Nuprl Lemma : isect2_decomp

[t1,t2:Type]. ∀[x:t1 ⋂ t2].  ((x ∈ t1) ∧ (x ∈ t2))


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B isect2: T1 ⋂ T2 btrue: tt ifthenelse: if then else fi  guard: {T} subtype_rel: A ⊆B bfalse: ff
Lemmas referenced :  isect2_wf subtype_rel_self btrue_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  extract_by_obid isectElimination hypothesisEquality isect_memberEquality because_Cache Error :inhabitedIsType,  universeEquality applyEquality

Latex:
\mforall{}[t1,t2:Type].  \mforall{}[x:t1  \mcap{}  t2].    ((x  \mmember{}  t1)  \mwedge{}  (x  \mmember{}  t2))



Date html generated: 2019_06_20-AM-11_32_09
Last ObjectModification: 2018_09_26-AM-11_28_14

Theory : bool_1


Home Index