Nuprl Lemma : fix_wf_corec2'

[F,H:Type ⟶ Type].
  ∀[G:⋂T:{T:Type| corec(T.F[T]) ⊆T} (H[T] ⟶ H[F[T]]) ⋂ Top ⟶ H[Top]]. (fix(G) ∈ H[corec(T.F[T])]) 
  supposing Continuous(T.H[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) type-continuous: Continuous(T.F[T]) isect2: T1 ⋂ T2 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a corec: corec(T.F[T]) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop: nat: implies:  Q false: False ge: i ≥  guard: {T} top: Top and: P ∧ Q cand: c∧ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) subtract: m type-continuous: Continuous(T.F[T])
Lemmas referenced :  isect2_wf subtype_rel_wf corec_wf subtype_rel_universe1 istype-universe top_wf type-continuous_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than primrec0_lemma istype-void subtract-1-ge-0 istype-nat isect2_decomp primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int less-iff-le add_functionality_wrt_le add-associates add-zero add-commutes le-add-cancel2 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf isect2_subtype_rel3 primrec_wf subtract_wf decidable__le istype-false not-le-2 condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-swap le-add-cancel istype-le int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut applyEquality hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  thin instantiate extract_by_obid isectElimination isectEquality setEquality closedConclusion universeEquality Error :lambdaEquality_alt,  hypothesisEquality Error :inhabitedIsType,  because_Cache Error :lambdaFormation_alt,  setElimination rename functionEquality cumulativity Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :functionIsType,  intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination Error :functionIsTypeImplies,  Error :equalityIsType1,  lambdaEquality productElimination independent_pairFormation unionElimination equalityElimination addEquality Error :dependent_pairFormation_alt,  Error :equalityIstype,  promote_hyp Error :inlFormation_alt,  Error :isectIsType,  Error :setIsType,  Error :dependent_set_memberEquality_alt,  minusEquality functionExtensionality

Latex:
\mforall{}[F,H:Type  {}\mrightarrow{}  Type].
    \mforall{}[G:\mcap{}T:\{T:Type|  corec(T.F[T])  \msubseteq{}r  T\}  .  (H[T]  {}\mrightarrow{}  H[F[T]])  \mcap{}  Top  {}\mrightarrow{}  H[Top]]
        (fix(G)  \mmember{}  H[corec(T.F[T])]) 
    supposing  Continuous(T.H[T])



Date html generated: 2019_06_20-PM-00_36_51
Last ObjectModification: 2018_11_28-AM-11_40_49

Theory : co-recursion


Home Index