Nuprl Lemma : type-continuous_wf
∀[F:Type ⟶ Type]. (Continuous(t.F[t]) ∈ ℙ')
Proof
Definitions occuring in Statement :
type-continuous: Continuous(T.F[T])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
type-continuous: Continuous(T.F[T])
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
uall_wf,
nat_wf,
subtype_rel_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
thin,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
functionEquality,
cumulativity,
hypothesis,
universeEquality,
lambdaEquality,
isectEquality,
applyEquality,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[F:Type {}\mrightarrow{} Type]. (Continuous(t.F[t]) \mmember{} \mBbbP{}')
Date html generated:
2016_05_13-PM-04_09_35
Last ObjectModification:
2015_12_26-AM-11_22_43
Theory : subtype_1
Home
Index