Nuprl Lemma : continuous-function
∀[A,B:Type ⟶ Type].  (Continuous(T.A[T] ⟶ B[T])) supposing (Continuous(T.B[T]) and Continuous+(T.A[T]))
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
type-continuous: Continuous(T.F[T])
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
strong-type-continuous: Continuous+(T.F[T])
, 
ext-eq: A ≡ B
Lemmas referenced : 
false_wf, 
le_wf, 
nat_wf, 
type-continuous_wf, 
strong-type-continuous_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
applyEquality, 
universeEquality, 
isectEquality, 
functionEquality, 
axiomEquality, 
cumulativity, 
isect_memberEquality, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[A,B:Type  {}\mrightarrow{}  Type].
    (Continuous(T.A[T]  {}\mrightarrow{}  B[T]))  supposing  (Continuous(T.B[T])  and  Continuous+(T.A[T]))
Date html generated:
2017_04_14-AM-07_36_18
Last ObjectModification:
2017_02_27-PM-03_08_40
Theory : subtype_1
Home
Index