Nuprl Lemma : strong-continuous-tag-case

[z:Atom]. ∀[F:Type ⟶ Type].  Continuous+(T.z:F[T]) supposing Continuous+(T.F[T])


Proof




Definitions occuring in Statement :  tag-case: z:T strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a tag-case: z:T so_lambda: λ2y.t[x; y] so_apply: x[s] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B subtype_rel: A ⊆B so_lambda: λ2x.t[x]
Lemmas referenced :  strong-continuous-depproduct ifthenelse_wf eq_atom_wf top_wf bool_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom continuous-constant nat_wf strong-type-continuous_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin atomEquality lambdaEquality instantiate hypothesisEquality hypothesis universeEquality applyEquality functionExtensionality cumulativity independent_isectElimination lambdaFormation unionElimination equalityElimination because_Cache productElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination independent_functionElimination voidElimination isect_memberEquality independent_pairEquality axiomEquality functionEquality

Latex:
\mforall{}[z:Atom].  \mforall{}[F:Type  {}\mrightarrow{}  Type].    Continuous+(T.z:F[T])  supposing  Continuous+(T.F[T])



Date html generated: 2018_05_21-PM-08_42_00
Last ObjectModification: 2017_07_26-PM-06_05_53

Theory : general


Home Index