Nuprl Lemma : strong-continuous-isect2

[F,G:Type ⟶ Type].  (Continuous+(T.F[T] ⋂ G[T])) supposing (Continuous+(T.G[T]) and Continuous+(T.F[T]))


Proof




Definitions occuring in Statement :  strong-type-continuous: Continuous+(T.F[T]) isect2: T1 ⋂ T2 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_lambda: λ2x.t[x] prop: cand: c∧ B bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 isect2: T1 ⋂ T2 subtype_rel: A ⊆B and: P ∧ Q ext-eq: A ≡ B strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  isect_subtype_rel_trivial nat_wf isect2_wf isect2_subtype_rel subtype_rel_wf isect2_subtype_rel2 bool_wf isect2_decomp strong-type-continuous_wf
Rules used in proof :  because_Cache universeEquality cumulativity functionEquality axiomEquality independent_pairEquality equalitySymmetry equalityTransitivity productElimination hypothesisEquality applyEquality isectElimination isectEquality hypothesis lemma_by_obid equalityElimination thin unionElimination sqequalHypSubstitution isect_memberEquality lambdaEquality independent_pairFormation cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution extract_by_obid independent_isectElimination dependent_pairFormation

Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (Continuous+(T.F[T]  \mcap{}  G[T]))  supposing  (Continuous+(T.G[T])  and  Continuous+(T.F[T]))



Date html generated: 2019_06_20-PM-00_27_39
Last ObjectModification: 2018_08_07-PM-05_10_05

Theory : subtype_1


Home Index