Nuprl Lemma : isect_subtype_rel_trivial

[A,C:Type]. ∀[B:A ⟶ Type].  (⋂x:A. B[x]) ⊆supposing ∃x:A. (B[x] ⊆C)


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B exists: x:A. B[x] so_apply: x[s] prop: so_lambda: λ2x.t[x]
Lemmas referenced :  exists_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution productElimination thin hypothesisEquality applyEquality sqequalRule isectElimination equalityTransitivity equalitySymmetry hypothesis isectEquality axiomEquality lemma_by_obid isect_memberEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[A,C:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (\mcap{}x:A.  B[x])  \msubseteq{}r  C  supposing  \mexists{}x:A.  (B[x]  \msubseteq{}r  C)



Date html generated: 2016_05_13-PM-03_18_58
Last ObjectModification: 2015_12_26-AM-09_08_00

Theory : subtype_0


Home Index