Step
*
1
2
of Lemma
ses-legal-thread-decrypt
1. s : SES@i'
2. ActionsDisjoint@i'
3. NoncesCiphersAndKeysDisjoint
4. PropertyD@i'
5. es : EO+(Info)@i'
6. A : Id@i
7. thr : {thr:Act List| ∀i:ℕ||thr|| - 1. (thr[i] <loc thr[i + 1])} @i
8. e : E@i
9. ∀i:ℕ||thr||. UsedAtoms(thr[i]) ⊆ [Private(A) / concat(map(λj.UseableAtoms(thr[j]);[0, i)))]@i
10. ↑e ∈b Decrypt
11. i : ℕ||thr||@i
12. e = thr[i] ∈ E@i
13. ∀a:Atom1. ((a ∈ UsedAtoms(thr[i]))
⇒ (a ∈ [Private(A) / concat(map(λj.UseableAtoms(thr[j]);[0, i)))]))
14. (cipherText(e) ∈ [Private(A) / concat(map(λj.UseableAtoms(thr[j]);[0, i)))])
⊢ ∃a:Act. ((a <loc e) ∧ (∃i:ℕ||thr||. (a = thr[i] ∈ E)) ∧ (a has cipherText(e)))
BY
{ ((RWO "cons_member" (-1) THENM D -1) THEN Auto) }
1
1. s : SES@i'
2. ActionsDisjoint@i'
3. NoncesCiphersAndKeysDisjoint
4. PropertyD@i'
5. es : EO+(Info)@i'
6. A : Id@i
7. thr : {thr:Act List| ∀i:ℕ||thr|| - 1. (thr[i] <loc thr[i + 1])} @i
8. e : E@i
9. ∀i:ℕ||thr||. UsedAtoms(thr[i]) ⊆ [Private(A) / concat(map(λj.UseableAtoms(thr[j]);[0, i)))]@i
10. ↑e ∈b Decrypt
11. i : ℕ||thr||@i
12. e = thr[i] ∈ E@i
13. ∀a:Atom1. ((a ∈ UsedAtoms(thr[i]))
⇒ (a ∈ [Private(A) / concat(map(λj.UseableAtoms(thr[j]);[0, i)))]))
14. cipherText(e) = Private(A) ∈ Atom1
⊢ ∃a:Act. ((a <loc e) ∧ (∃i:ℕ||thr||. (a = thr[i] ∈ E)) ∧ (a has cipherText(e)))
2
1. s : SES@i'
2. ActionsDisjoint@i'
3. NoncesCiphersAndKeysDisjoint
4. PropertyD@i'
5. es : EO+(Info)@i'
6. A : Id@i
7. thr : {thr:Act List| ∀i:ℕ||thr|| - 1. (thr[i] <loc thr[i + 1])} @i
8. e : E@i
9. ∀i:ℕ||thr||. UsedAtoms(thr[i]) ⊆ [Private(A) / concat(map(λj.UseableAtoms(thr[j]);[0, i)))]@i
10. ↑e ∈b Decrypt
11. i : ℕ||thr||@i
12. e = thr[i] ∈ E@i
13. ∀a:Atom1. ((a ∈ UsedAtoms(thr[i]))
⇒ (a ∈ [Private(A) / concat(map(λj.UseableAtoms(thr[j]);[0, i)))]))
14. (cipherText(e) ∈ concat(map(λj.UseableAtoms(thr[j]);[0, i))))
⊢ ∃a:Act. ((a <loc e) ∧ (∃i:ℕ||thr||. (a = thr[i] ∈ E)) ∧ (a has cipherText(e)))
Latex:
Latex:
1. s : SES@i'
2. ActionsDisjoint@i'
3. NoncesCiphersAndKeysDisjoint
4. PropertyD@i'
5. es : EO+(Info)@i'
6. A : Id@i
7. thr : \{thr:Act List| \mforall{}i:\mBbbN{}||thr|| - 1. (thr[i] <loc thr[i + 1])\} @i
8. e : E@i
9. \mforall{}i:\mBbbN{}||thr||. UsedAtoms(thr[i]) \msubseteq{} [Private(A) / concat(map(\mlambda{}j.UseableAtoms(thr[j]);[0, i)))]@i
10. \muparrow{}e \mmember{}\msubb{} Decrypt
11. i : \mBbbN{}||thr||@i
12. e = thr[i]@i
13. \mforall{}a:Atom1
((a \mmember{} UsedAtoms(thr[i])) {}\mRightarrow{} (a \mmember{} [Private(A) / concat(map(\mlambda{}j.UseableAtoms(thr[j]);[0, i)))]))
14. (cipherText(e) \mmember{} [Private(A) / concat(map(\mlambda{}j.UseableAtoms(thr[j]);[0, i)))])
\mvdash{} \mexists{}a:Act. ((a <loc e) \mwedge{} (\mexists{}i:\mBbbN{}||thr||. (a = thr[i])) \mwedge{} (a has cipherText(e)))
By
Latex:
((RWO "cons\_member" (-1) THENM D -1) THEN Auto)
Home
Index