Step
*
1
of Lemma
signature-release-lemma2
1. ses : SES@i'
2. A : SecurityAxioms@i'
3. s2 : Top@i'
4. ∀[bss:Basic1 List]
∀[A:Id]
(∀[es:EO+(Info)]. ∀[thr:Thread].
(∀[i:ℕ||thr||]. ∀[j:ℕi].
(¬(signature(thr[j]) released before thr[i])) supposing
((∀k:{j + 1..i-}. (¬↑thr[k] ∈b Send)) and
(↑thr[j] ∈b Sign))) supposing
(loc(thr)= A and
(thr is one of bss at A))) supposing
((Protocol1(bss) A) and
Honest(A))
supposing Legal(bss) ∧ UniqueSignatures(bss)
5. bss : Basic1 List@i'
6. Legal(bss)@i'
7. FreshSignatures(bss)@i'
8. UniqueSignatures(bss)
9. A@0 : Id@i
10. Honest(A@0)
11. Protocol1(bss) A@0@i'
12. es : EO+(Info)@i'
13. thr : {thr:Act List| ∀i:ℕ||thr|| - 1. (thr[i] <loc thr[i + 1])} @i
14. (thr is one of bss at A@0)@i'
15. loc(thr)= A@0
16. ∀[i:ℕ||thr||]. ∀[j:ℕi].
(¬(signature(thr[j]) released before thr[i])) supposing
((∀k:{j + 1..i-}. (¬↑thr[k] ∈b Send)) and
(↑thr[j] ∈b Sign))
17. i : ℕ||thr||@i
18. ∀[j:ℕi]
(¬(signature(thr[j]) released before thr[i])) supposing
((∀k:{j + 1..i-}. (¬↑thr[k] ∈b Send)) and
(↑thr[j] ∈b Sign))
19. j : ℕi@i
20. ↑thr[j] ∈b Sign@i
21. ∀k:{j + 1..i-}. (¬↑thr[k] ∈b Send)@i
22. ¬(signature(thr[j]) released before thr[i])
23. e : E@i
24. ¬(loc(e) = A@0 ∈ Id)@i
25. (e has signature(thr[j]))@i
⊢ (thr[i] < e)
BY
{ (RepUR ``unique-sig-protocol noncelike-signatures`` 8 THEN (InstHyp [⌈A@0⌉;⌈es⌉;⌈thr⌉;⌈thr[j]⌉] 8⋅ THENA Auto)) }
1
1. ses : SES@i'
2. A : SecurityAxioms@i'
3. s2 : Top@i'
4. ∀[bss:Basic1 List]
∀[A:Id]
(∀[es:EO+(Info)]. ∀[thr:Thread].
(∀[i:ℕ||thr||]. ∀[j:ℕi].
(¬(signature(thr[j]) released before thr[i])) supposing
((∀k:{j + 1..i-}. (¬↑thr[k] ∈b Send)) and
(↑thr[j] ∈b Sign))) supposing
(loc(thr)= A and
(thr is one of bss at A))) supposing
((Protocol1(bss) A) and
Honest(A))
supposing Legal(bss) ∧ UniqueSignatures(bss)
5. bss : Basic1 List@i'
6. Legal(bss)@i'
7. FreshSignatures(bss)@i'
8. ∀A:Id
(Honest(A)
⇒ (Protocol1(bss) A)
⇒ (∀es:EO+(Info). ∀thr:Thread.
((thr is one of bss at A)
⇒ (∀e1,e2:E(Sign). ((signature(e1) = signature(e2) ∈ Atom1)
⇒ e1 ∈ thr
⇒ (e1 = e2 ∈ E))))))
9. A@0 : Id@i
10. Honest(A@0)
11. Protocol1(bss) A@0@i'
12. es : EO+(Info)@i'
13. thr : {thr:Act List| ∀i:ℕ||thr|| - 1. (thr[i] <loc thr[i + 1])} @i
14. (thr is one of bss at A@0)@i'
15. loc(thr)= A@0
16. ∀[i:ℕ||thr||]. ∀[j:ℕi].
(¬(signature(thr[j]) released before thr[i])) supposing
((∀k:{j + 1..i-}. (¬↑thr[k] ∈b Send)) and
(↑thr[j] ∈b Sign))
17. i : ℕ||thr||@i
18. ∀[j:ℕi]
(¬(signature(thr[j]) released before thr[i])) supposing
((∀k:{j + 1..i-}. (¬↑thr[k] ∈b Send)) and
(↑thr[j] ∈b Sign))
19. j : ℕi@i
20. ↑thr[j] ∈b Sign@i
21. ∀k:{j + 1..i-}. (¬↑thr[k] ∈b Send)@i
22. ¬(signature(thr[j]) released before thr[i])
23. e : E@i
24. ¬(loc(e) = A@0 ∈ Id)@i
25. (e has signature(thr[j]))@i
26. ∀e2:E(Sign). ((signature(thr[j]) = signature(e2) ∈ Atom1)
⇒ thr[j] ∈ thr
⇒ (thr[j] = e2 ∈ E))
⊢ (thr[i] < e)
Latex:
Latex:
1. ses : SES@i'
2. A : SecurityAxioms@i'
3. s2 : Top@i'
4. \mforall{}[bss:Basic1 List]
\mforall{}[A:Id]
(\mforall{}[es:EO+(Info)]. \mforall{}[thr:Thread].
(\mforall{}[i:\mBbbN{}||thr||]. \mforall{}[j:\mBbbN{}i].
(\mneg{}(signature(thr[j]) released before thr[i])) supposing
((\mforall{}k:\{j + 1..i\msupminus{}\}. (\mneg{}\muparrow{}thr[k] \mmember{}\msubb{} Send)) and
(\muparrow{}thr[j] \mmember{}\msubb{} Sign))) supposing
(loc(thr)= A and
(thr is one of bss at A))) supposing
((Protocol1(bss) A) and
Honest(A))
supposing Legal(bss) \mwedge{} UniqueSignatures(bss)
5. bss : Basic1 List@i'
6. Legal(bss)@i'
7. FreshSignatures(bss)@i'
8. UniqueSignatures(bss)
9. A@0 : Id@i
10. Honest(A@0)
11. Protocol1(bss) A@0@i'
12. es : EO+(Info)@i'
13. thr : \{thr:Act List| \mforall{}i:\mBbbN{}||thr|| - 1. (thr[i] <loc thr[i + 1])\} @i
14. (thr is one of bss at A@0)@i'
15. loc(thr)= A@0
16. \mforall{}[i:\mBbbN{}||thr||]. \mforall{}[j:\mBbbN{}i].
(\mneg{}(signature(thr[j]) released before thr[i])) supposing
((\mforall{}k:\{j + 1..i\msupminus{}\}. (\mneg{}\muparrow{}thr[k] \mmember{}\msubb{} Send)) and
(\muparrow{}thr[j] \mmember{}\msubb{} Sign))
17. i : \mBbbN{}||thr||@i
18. \mforall{}[j:\mBbbN{}i]
(\mneg{}(signature(thr[j]) released before thr[i])) supposing
((\mforall{}k:\{j + 1..i\msupminus{}\}. (\mneg{}\muparrow{}thr[k] \mmember{}\msubb{} Send)) and
(\muparrow{}thr[j] \mmember{}\msubb{} Sign))
19. j : \mBbbN{}i@i
20. \muparrow{}thr[j] \mmember{}\msubb{} Sign@i
21. \mforall{}k:\{j + 1..i\msupminus{}\}. (\mneg{}\muparrow{}thr[k] \mmember{}\msubb{} Send)@i
22. \mneg{}(signature(thr[j]) released before thr[i])
23. e : E@i
24. \mneg{}(loc(e) = A@0)@i
25. (e has signature(thr[j]))@i
\mvdash{} (thr[i] < e)
By
Latex:
(RepUR ``unique-sig-protocol noncelike-signatures`` 8
THEN (InstHyp [\mkleeneopen{}A@0\mkleeneclose{};\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}thr\mkleeneclose{};\mkleeneopen{}thr[j]\mkleeneclose{}] 8\mcdot{} THENA Auto)
)
Home
Index