Step
*
1
2
2
1
of Lemma
accum-class-programmable
1. Info : Type
2. A : Type
3. B : Type
4. X : EClass(A)
5. base : A ─→ B
6. f : B ─→ A ─→ B
7. Y : EClass(B)@i'
8. ∀es:EO+(Info). ∀e:E.
     ((Y es e) = if e ∈b X then if e ∈b Prior(Y) then {f[Prior(Y)(e);X(e)]} else {base[X(e)]} fi  else {} fi  ∈ bag(B))
9. Singlevalued(Y)
⊢ accum-class(b,a.f[b;a];a.base[a];X) = Y ∈ EClass(B)
BY
{ Assert ⌈∀es:EO+(Info). ∀e:E.  (↑e ∈b X 
⇐⇒ ↑e ∈b Y)⌉⋅ }
1
.....assertion..... 
1. Info : Type
2. A : Type
3. B : Type
4. X : EClass(A)
5. base : A ─→ B
6. f : B ─→ A ─→ B
7. Y : EClass(B)@i'
8. ∀es:EO+(Info). ∀e:E.
     ((Y es e) = if e ∈b X then if e ∈b Prior(Y) then {f[Prior(Y)(e);X(e)]} else {base[X(e)]} fi  else {} fi  ∈ bag(B))
9. Singlevalued(Y)
⊢ ∀es:EO+(Info). ∀e:E.  (↑e ∈b X 
⇐⇒ ↑e ∈b Y)
2
1. Info : Type
2. A : Type
3. B : Type
4. X : EClass(A)
5. base : A ─→ B
6. f : B ─→ A ─→ B
7. Y : EClass(B)@i'
8. ∀es:EO+(Info). ∀e:E.
     ((Y es e) = if e ∈b X then if e ∈b Prior(Y) then {f[Prior(Y)(e);X(e)]} else {base[X(e)]} fi  else {} fi  ∈ bag(B))
9. Singlevalued(Y)
10. ∀es:EO+(Info). ∀e:E.  (↑e ∈b X 
⇐⇒ ↑e ∈b Y)
⊢ accum-class(b,a.f[b;a];a.base[a];X) = Y ∈ EClass(B)
Latex:
Latex:
1.  Info  :  Type
2.  A  :  Type
3.  B  :  Type
4.  X  :  EClass(A)
5.  base  :  A  {}\mrightarrow{}  B
6.  f  :  B  {}\mrightarrow{}  A  {}\mrightarrow{}  B
7.  Y  :  EClass(B)@i'
8.  \mforall{}es:EO+(Info).  \mforall{}e:E.
          ((Y  es  e)
          =  if  e  \mmember{}\msubb{}  X  then  if  e  \mmember{}\msubb{}  Prior(Y)  then  \{f[Prior(Y)(e);X(e)]\}  else  \{base[X(e)]\}  fi    else  \{\}  fi  )
9.  Singlevalued(Y)
\mvdash{}  accum-class(b,a.f[b;a];a.base[a];X)  =  Y
By
Latex:
Assert  \mkleeneopen{}\mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y)\mkleeneclose{}\mcdot{}
Home
Index