Step
*
1
1
of Lemma
assert-graph-rcvset
1. a : Id ─→ Id ─→ Id@i
2. b : Id@i
3. S : Id List@i
4. G : {i:Id| (i ∈ S)} ─→ ({i:Id| (i ∈ S)} List)@i
5. x3 : Id@i
6. x5 : Id@i
7. x6 : Id@i
8. x2 : Id@i
9. (x3 ∈ S)
10. x2 = b ∈ Id
11. x6 = (a x3 x5) ∈ Id
12. (x3─→x5)∈G
⊢ ∃i,j:Id. ((i ∈ S) ∧ (j ∈ S) ∧ (i─→j)∈G ∧ ((inl <<x3, x5, x6>, x2>) = rcv((link(a i j) from i to j),b) ∈ Knd))
BY
{ ((Fold `mk_lnk` 0 THEN Fold `rcv` 0) THEN At ⌈Type⌉ (InstConcl [⌈x3⌉;⌈x5⌉])⋅ THEN Auto)⋅ }
1
1. a : Id ─→ Id ─→ Id@i
2. b : Id@i
3. S : Id List@i
4. G : {i:Id| (i ∈ S)} ─→ ({i:Id| (i ∈ S)} List)@i
5. x3 : Id@i
6. x5 : Id@i
7. x6 : Id@i
8. x2 : Id@i
9. (x3 ∈ S)
10. x2 = b ∈ Id
11. x6 = (a x3 x5) ∈ Id
12. (x3─→x5)∈G
13. (x3 ∈ S)
⊢ (x5 ∈ S)
Latex:
1. a : Id {}\mrightarrow{} Id {}\mrightarrow{} Id@i
2. b : Id@i
3. S : Id List@i
4. G : \{i:Id| (i \mmember{} S)\} {}\mrightarrow{} (\{i:Id| (i \mmember{} S)\} List)@i
5. x3 : Id@i
6. x5 : Id@i
7. x6 : Id@i
8. x2 : Id@i
9. (x3 \mmember{} S)
10. x2 = b
11. x6 = (a x3 x5)
12. (x3{}\mrightarrow{}x5)\mmember{}G
\mvdash{} \mexists{}i,j:Id. ((i \mmember{} S) \mwedge{} (j \mmember{} S) \mwedge{} (i{}\mrightarrow{}j)\mmember{}G \mwedge{} ((inl <<x3, x5, x6>, x2>) = rcv((link(a i j) from i to j)\000C,b)))
By
((Fold `mk\_lnk` 0 THEN Fold `rcv` 0) THEN At \mkleeneopen{}Type\mkleeneclose{} (InstConcl [\mkleeneopen{}x3\mkleeneclose{};\mkleeneopen{}x5\mkleeneclose{}])\mcdot{} THEN Auto)\mcdot{}
Home
Index