Nuprl Lemma : classrel-classfun-res

[Info,T:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(T)]. ∀[e:E]. ∀[v:T].
  (uiff(v ∈ X(e);v X@e ∈ T)) supposing (single-valued-classrel(es;X;T) and (↑e ∈b X))


Proof




Definitions occuring in Statement :  classfun-res: X@e single-valued-classrel: single-valued-classrel(es;X;T) classrel: v ∈ X(e) member-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Lemmas :  classrel_wf equal_wf classfun-res_wf single-valued-classrel_wf assert_wf member-eclass_wf es-E_wf event-ordering+_subtype eclass_wf event-ordering+_wf bag-member-classfun-res
\mforall{}[Info,T:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T)].  \mforall{}[e:E].  \mforall{}[v:T].
    (uiff(v  \mmember{}  X(e);v  =  X@e))  supposing  (single-valued-classrel(es;X;T)  and  (\muparrow{}e  \mmember{}\msubb{}  X))



Date html generated: 2015_07_17-PM-00_21_47
Last ObjectModification: 2015_01_27-PM-11_39_41

Home Index