Nuprl Lemma : classrel-classfun
∀[Info,T:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(T)].  ∀[e:E]. ∀[v:T].  uiff(v ∈ X(e);v = X(e) ∈ T) supposing X is functional
Proof
Definitions occuring in Statement : 
classfun: X(e)
, 
es-functional-class: X is functional
, 
classrel: v ∈ X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
classfun_wf, 
bag-member-classfun, 
classrel_wf, 
equal_wf, 
es-E_wf, 
event-ordering+_subtype, 
es-functional-class_wf, 
eclass_wf, 
event-ordering+_wf
\mforall{}[Info,T:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T)].
    \mforall{}[e:E].  \mforall{}[v:T].    uiff(v  \mmember{}  X(e);v  =  X(e))  supposing  X  is  functional
Date html generated:
2015_07_17-PM-00_21_20
Last ObjectModification:
2015_01_27-PM-11_39_56
Home
Index