Nuprl Lemma : cond-class-subtype1
∀[Info,A:Type]. ∀[X,Y:EClass(A)]. ∀[es:EO+(Info)].  (E(X) ⊆r E([X?Y]))
Proof
Definitions occuring in Statement : 
es-E-interface: E(X)
, 
cond-class: [X?Y]
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Lemmas : 
assert_wf, 
in-eclass_wf, 
es-E-interface_wf, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
top_wf, 
event-ordering+_wf, 
eclass_wf, 
is-cond-class
\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].  \mforall{}[es:EO+(Info)].    (E(X)  \msubseteq{}r  E([X?Y]))
Date html generated:
2015_07_17-PM-00_52_33
Last ObjectModification:
2015_01_27-PM-11_02_44
Home
Index