Nuprl Lemma : es-interface-subtype_rel2

[Info:Type]. ∀[A,B:es:EO+(Info) ─→ E ─→ Type].
  EClass(A[es;e]) ⊆EClass(B[es;e]) supposing ∀es:EO+(Info). ∀e:E.  (A[es;e] ⊆B[es;e])


Proof




Definitions occuring in Statement :  eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] function: x:A ─→ B[x] universe: Type
Lemmas :  dep-eclass_subtype_rel es-E_wf event-ordering+_subtype event-ordering+_wf all_wf subtype_rel_wf
\mforall{}[Info:Type].  \mforall{}[A,B:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  Type].
    EClass(A[es;e])  \msubseteq{}r  EClass(B[es;e])  supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.    (A[es;e]  \msubseteq{}r  B[es;e])



Date html generated: 2015_07_17-PM-00_47_53
Last ObjectModification: 2015_01_27-PM-11_04_45

Home Index