Step * 1 2 of Lemma consensus-ts3-invariant0


1. [V] Type
2. ¬(INITIAL WITHDRAWN ∈ consensus-state3(V))
3. ∀[v:V]
     (((¬(COMMITED[v] INITIAL ∈ consensus-state3(V))) ∧ (CONSIDERING[v] INITIAL ∈ consensus-state3(V))))
     ∧ (COMMITED[v] WITHDRAWN ∈ consensus-state3(V)))
     ∧ (CONSIDERING[v] WITHDRAWN ∈ consensus-state3(V)))
     ∧ (∀[v':V]
          ((¬(CONSIDERING[v] COMMITED[v'] ∈ consensus-state3(V)))
          ∧ (CONSIDERING[v] CONSIDERING[v'] ∈ consensus-state3(V)))
            ∧ (COMMITED[v] COMMITED[v'] ∈ consensus-state3(V))) 
            supposing ¬(v v' ∈ V))))
4. consensus-state3(V) List@i
5. consensus-state3(V) List@i
6. [INITIAL] ∈ consensus-state3(V) List
7. ∀i:ℕ||L||
     ∀j:ℕ||L||. (L[j] INITIAL ∈ consensus-state3(V)) ∨ (L[j] WITHDRAWN ∈ consensus-state3(V)) supposing i < 
     supposing L[i] INITIAL ∈ consensus-state3(V)@i
8. : ℕ||L [INITIAL]||
9. [INITIAL][i] INITIAL ∈ consensus-state3(V)
10. : ℕ||L [INITIAL]||
11. i < j
12. ¬(j ||L|| ∈ ℤ)
⊢ (L [INITIAL][j] INITIAL ∈ consensus-state3(V)) ∨ (L [INITIAL][j] WITHDRAWN ∈ consensus-state3(V))
BY
(Assert ||L [INITIAL]|| (||L|| 1) ∈ ℤ BY
         ((RWO "length_append" THEN Reduce 0) THEN Auto)) }

1
1. [V] Type
2. ¬(INITIAL WITHDRAWN ∈ consensus-state3(V))
3. ∀[v:V]
     (((¬(COMMITED[v] INITIAL ∈ consensus-state3(V))) ∧ (CONSIDERING[v] INITIAL ∈ consensus-state3(V))))
     ∧ (COMMITED[v] WITHDRAWN ∈ consensus-state3(V)))
     ∧ (CONSIDERING[v] WITHDRAWN ∈ consensus-state3(V)))
     ∧ (∀[v':V]
          ((¬(CONSIDERING[v] COMMITED[v'] ∈ consensus-state3(V)))
          ∧ (CONSIDERING[v] CONSIDERING[v'] ∈ consensus-state3(V)))
            ∧ (COMMITED[v] COMMITED[v'] ∈ consensus-state3(V))) 
            supposing ¬(v v' ∈ V))))
4. consensus-state3(V) List@i
5. consensus-state3(V) List@i
6. [INITIAL] ∈ consensus-state3(V) List
7. ∀i:ℕ||L||
     ∀j:ℕ||L||. (L[j] INITIAL ∈ consensus-state3(V)) ∨ (L[j] WITHDRAWN ∈ consensus-state3(V)) supposing i < 
     supposing L[i] INITIAL ∈ consensus-state3(V)@i
8. : ℕ||L [INITIAL]||
9. [INITIAL][i] INITIAL ∈ consensus-state3(V)
10. : ℕ||L [INITIAL]||
11. i < j
12. ¬(j ||L|| ∈ ℤ)
13. ||L [INITIAL]|| (||L|| 1) ∈ ℤ
⊢ (L [INITIAL][j] INITIAL ∈ consensus-state3(V)) ∨ (L [INITIAL][j] WITHDRAWN ∈ consensus-state3(V))


Latex:



1.  [V]  :  Type
2.  \mneg{}(INITIAL  =  WITHDRAWN)
3.  \mforall{}[v:V]
          (((\mneg{}(COMMITED[v]  =  INITIAL))  \mwedge{}  (\mneg{}(CONSIDERING[v]  =  INITIAL)))
          \mwedge{}  (\mneg{}(COMMITED[v]  =  WITHDRAWN))
          \mwedge{}  (\mneg{}(CONSIDERING[v]  =  WITHDRAWN))
          \mwedge{}  (\mforall{}[v':V]
                    ((\mneg{}(CONSIDERING[v]  =  COMMITED[v']))
                    \mwedge{}  (\mneg{}(CONSIDERING[v]  =  CONSIDERING[v']))  \mwedge{}  (\mneg{}(COMMITED[v]  =  COMMITED[v'])) 
                        supposing  \mneg{}(v  =  v'))))
4.  L  :  consensus-state3(V)  List@i
5.  y  :  consensus-state3(V)  List@i
6.  L  @  [INITIAL]  \mmember{}  consensus-state3(V)  List
7.  \mforall{}i:\mBbbN{}||L||
          \mforall{}j:\mBbbN{}||L||.  (L[j]  =  INITIAL)  \mvee{}  (L[j]  =  WITHDRAWN)  supposing  i  <  j  supposing  L[i]  =  INITIAL@i
8.  i  :  \mBbbN{}||L  @  [INITIAL]||
9.  L  @  [INITIAL][i]  =  INITIAL
10.  j  :  \mBbbN{}||L  @  [INITIAL]||
11.  i  <  j
12.  \mneg{}(j  =  ||L||)
\mvdash{}  (L  @  [INITIAL][j]  =  INITIAL)  \mvee{}  (L  @  [INITIAL][j]  =  WITHDRAWN)


By

(Assert  ||L  @  [INITIAL]||  =  (||L||  +  1)  BY
              ((RWO  "length\_append"  0  THEN  Reduce  0)  THEN  Auto))




Home Index