Step
*
1
1
1
of Lemma
cs-ref-map3-decided
1. V : Type
2. L : consensus-state3(V) List@i
3. v : V@i
4. ∀[v':V]. v' = v ∈ V supposing (CONSIDERING[v'] ∈ L) ∨ (COMMITED[v'] ∈ L) 
   supposing (CONSIDERING[v] ∈ L) ∨ (COMMITED[v] ∈ L)
5. filter(λx.cs-is-committed(x);L) = [] ∈ (consensus-state3(V) List)
6. filter(λx.cs-is-considering(x);L) = [] ∈ (consensus-state3(V) List)
7. (COMMITED[v] ∈ L)@i
8. ∀[i:ℕ||L||]. (¬↑cs-is-committed(L[i]))
⊢ AMBIVALENT = Decided[v] ∈ consensus-state2(V)
BY
{ (RepeatFor 2 (D -2)
   THEN InstHyp [⌈i⌉] (-1)⋅
   THEN Auto
   THEN D -1
   THEN (RevHypSubst (-2) 0 THEN Auto)
   THEN RepUR ``cs-commited cs-is-committed`` 0
   THEN Auto) }
Latex:
1.  V  :  Type
2.  L  :  consensus-state3(V)  List@i
3.  v  :  V@i
4.  \mforall{}[v':V].  v'  =  v  supposing  (CONSIDERING[v']  \mmember{}  L)  \mvee{}  (COMMITED[v']  \mmember{}  L) 
      supposing  (CONSIDERING[v]  \mmember{}  L)  \mvee{}  (COMMITED[v]  \mmember{}  L)
5.  filter(\mlambda{}x.cs-is-committed(x);L)  =  []
6.  filter(\mlambda{}x.cs-is-considering(x);L)  =  []
7.  (COMMITED[v]  \mmember{}  L)@i
8.  \mforall{}[i:\mBbbN{}||L||].  (\mneg{}\muparrow{}cs-is-committed(L[i]))
\mvdash{}  AMBIVALENT  =  Decided[v]
By
(RepeatFor  2  (D  -2)
  THEN  InstHyp  [\mkleeneopen{}i\mkleeneclose{}]  (-1)\mcdot{}
  THEN  Auto
  THEN  D  -1
  THEN  (RevHypSubst  (-2)  0  THEN  Auto)
  THEN  RepUR  ``cs-commited  cs-is-committed``  0
  THEN  Auto)
Home
Index