Step
*
of Lemma
cut-list-maximal-exists
∀[Info:Type]
∀es:EO+(Info). ∀X:EClass(Top). ∀f:sys-antecedent(es;X). ∀a:E(X) List.
((¬(a = {} ∈ fset(E(X))))
⇒ (∃e:E(X)
((e ∈ a)
∧ (∀e':E(X). ((e' ∈ a)
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
∧ (∀e':E(X). ((e' ∈ a)
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X)))))))
BY
{ (Auto THEN DVar `a') }
1
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. ¬([] = {} ∈ fset(E(X)))@i
⊢ ∃e:E(X)
((e ∈ [])
∧ (∀e':E(X). ((e' ∈ [])
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
∧ (∀e':E(X). ((e' ∈ [])
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X)))))
2
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. u : E(X)
6. v : E(X) List
7. ¬([u / v] = {} ∈ fset(E(X)))@i
⊢ ∃e:E(X)
((e ∈ [u / v])
∧ (∀e':E(X). ((e' ∈ [u / v])
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
∧ (∀e':E(X). ((e' ∈ [u / v])
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X)))))
Latex:
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info). \mforall{}X:EClass(Top). \mforall{}f:sys-antecedent(es;X). \mforall{}a:E(X) List.
((\mneg{}(a = \{\}))
{}\mRightarrow{} (\mexists{}e:E(X)
((e \mmember{} a)
\mwedge{} (\mforall{}e':E(X). ((e' \mmember{} a) {}\mRightarrow{} (e = (X-pred e')) {}\mRightarrow{} (e' = e)))
\mwedge{} (\mforall{}e':E(X). ((e' \mmember{} a) {}\mRightarrow{} (e = (f e')) {}\mRightarrow{} (e' = e))))))
By
Latex:
(Auto THEN DVar `a')
Home
Index