Step
*
of Lemma
decidable__cs-precondition
∀[V:Type]
((∀v1,v2:V. Dec(v1 = v2 ∈ V))
⇒ (∃v,v':V. (¬(v = v' ∈ V)))
⇒ (∀A:Id List. ∀W:{a:Id| (a ∈ A)} List List. ∀s:ConsensusState. ∀i:ℤ. ∀v:V.
Dec(state s may consider v in inning i)))
BY
{ (Auto
THEN Unfold `cs-precondition` 0
THEN (Assert Dec((∃ws∈W. (∀b∈ws.i ≤ Inning(s;b))
∧ (∀ws'∈W.¬in state s, ws' blocks ws from archiving v in inning i))) BY
((ProveDecidable1 THENA Auto)
THEN DoSubsume
THEN Auto
THEN Unfold `consensus-state4` 0
THEN SubtypeReasoning
THEN Auto
THEN RepeatFor 2 (D -1)
THEN HypSubst' -1 0
THEN GenConclAtAddr [1]
THEN Auto))) }
1
1. [V] : Type
2. ∀v1,v2:V. Dec(v1 = v2 ∈ V)@i
3. ∃v,v':V. (¬(v = v' ∈ V))@i
4. A : Id List@i
5. W : {a:Id| (a ∈ A)} List List@i
6. s : ConsensusState@i
7. i : ℤ@i
8. v : V@i
9. Dec((∃ws∈W. (∀b∈ws.i ≤ Inning(s;b)) ∧ (∀ws'∈W.¬in state s, ws' blocks ws from archiving v in inning i)))
⊢ Dec(∃ws:{a:Id| (a ∈ A)} List
((ws ∈ W)
∧ (∀b:{a:Id| (a ∈ A)} . ((b ∈ ws)
⇒ (i ≤ Inning(s;b))))
∧ (∀ws':{a:Id| (a ∈ A)} List. ((ws' ∈ W)
⇒ (¬in state s, ws' blocks ws from archiving v in inning i)))))
Latex:
\mforall{}[V:Type]
((\mforall{}v1,v2:V. Dec(v1 = v2))
{}\mRightarrow{} (\mexists{}v,v':V. (\mneg{}(v = v')))
{}\mRightarrow{} (\mforall{}A:Id List. \mforall{}W:\{a:Id| (a \mmember{} A)\} List List. \mforall{}s:ConsensusState. \mforall{}i:\mBbbZ{}. \mforall{}v:V.
Dec(state s may consider v in inning i)))
By
(Auto
THEN Unfold `cs-precondition` 0
THEN (Assert Dec((\mexists{}ws\mmember{}W. (\mforall{}b\mmember{}ws.i \mleq{} Inning(s;b))
\mwedge{} (\mforall{}ws'\mmember{}W.\mneg{}in state s, ws' blocks ws from archiving v in inning i))) BY
((ProveDecidable1 THENA Auto)
THEN DoSubsume
THEN Auto
THEN Unfold `consensus-state4` 0
THEN SubtypeReasoning
THEN Auto
THEN RepeatFor 2 (D -1)
THEN HypSubst' -1 0
THEN GenConclAtAddr [1]
THEN Auto)))
Home
Index