Nuprl Lemma : es-E-interface-conditional-subtype
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y,Z:EClass(Top)].  (E([X?Y]) ⊆ E(Z)) supposing ((E(Y) ⊆r E(Z)) and (E(X) ⊆r E(Z)))
Proof
Definitions occuring in Statement : 
es-E-interface: E(X)
, 
cond-class: [X?Y]
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
subtype: S ⊆ T
, 
universe: Type
Lemmas : 
es-E-interface-conditional-subtype_rel, 
es-E-interface_wf, 
cond-class_wf, 
top_wf, 
subtype_rel_wf, 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y,Z:EClass(Top)].
    (E([X?Y])  \msubseteq{}  E(Z))  supposing  ((E(Y)  \msubseteq{}r  E(Z))  and  (E(X)  \msubseteq{}r  E(Z)))
Date html generated:
2015_07_17-PM-00_57_10
Last ObjectModification:
2015_01_27-PM-10_46_42
Home
Index