Nuprl Lemma : es-E-interface-conditional-subtype_rel

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y,Z:EClass(Top)].  (E([X?Y]) ⊆E(Z)) supposing ((E(Y) ⊆E(Z)) and (E(X) ⊆E(Z)))


Proof




Definitions occuring in Statement :  es-E-interface: E(X) cond-class: [X?Y] eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top universe: Type
Lemmas :  es-E-interface_wf cond-class_wf top_wf is-cond-class assert_wf in-eclass_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y,Z:EClass(Top)].
    (E([X?Y])  \msubseteq{}r  E(Z))  supposing  ((E(Y)  \msubseteq{}r  E(Z))  and  (E(X)  \msubseteq{}r  E(Z)))



Date html generated: 2015_07_17-PM-00_57_02
Last ObjectModification: 2015_01_27-PM-10_49_57

Home Index