Nuprl Lemma : es-E-interface-subtype_rel-implies
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  {∀[e:E(X)]. (↑e ∈b Y)} supposing E(X) ⊆r E(Y)
Proof
Definitions occuring in Statement : 
es-E-interface: E(X)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
guard: {T}
, 
universe: Type
Lemmas : 
es-E-interface-property, 
assert_witness, 
in-eclass_wf, 
es-E-interface_wf, 
subtype_rel_wf, 
eclass_wf, 
top_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].    \{\mforall{}[e:E(X)].  (\muparrow{}e  \mmember{}\msubb{}  Y)\}  supposing  E(X)  \msubseteq{}r  E(Y)
Date html generated:
2015_07_17-PM-00_56_06
Last ObjectModification:
2015_01_27-PM-10_46_31
Home
Index