Nuprl Lemma : es-E-interface-subtype_rel-implies

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  {∀[e:E(X)]. (↑e ∈b Y)} supposing E(X) ⊆E(Y)


Proof




Definitions occuring in Statement :  es-E-interface: E(X) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) assert: b uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top guard: {T} universe: Type
Lemmas :  es-E-interface-property assert_witness in-eclass_wf es-E-interface_wf subtype_rel_wf eclass_wf top_wf es-E_wf event-ordering+_subtype event-ordering+_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].    \{\mforall{}[e:E(X)].  (\muparrow{}e  \mmember{}\msubb{}  Y)\}  supposing  E(X)  \msubseteq{}r  E(Y)



Date html generated: 2015_07_17-PM-00_56_06
Last ObjectModification: 2015_01_27-PM-10_46_31

Home Index