Step
*
1
1
1
2
1
of Lemma
es-cut-induction-sq-stable
.....assertion.....
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. [P] : Cut(X;f) ─→ ℙ
6. ∀c:Cut(X;f). SqStable(P[c])@i
7. P[{}]@i
8. ∀c:Cut(X;f). ∀e:E(X).
(P[c]
⇒ (P[c+e]) supposing (prior(X)(e) ∈ c supposing ↑e ∈b prior(X) and f e ∈ c supposing ¬((f e) = e ∈ E(X))))@i
9. es-eq(es) ∈ EqDecider(E(X))
10. n : ℕ
11. ∀n:ℕn. ∀c:Cut(X;f). ((||c|| ≤ n)
⇒ P[c])@i
12. c : Cut(X;f)@i
13. ||c|| ≤ n@i
14. ¬(c = {} ∈ fset(E(X)))
⊢ ∀e:E(X)
(e ∈ c
⇒ (∀e':E(X). (e' ∈ c
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
⇒ (∀e':E(X). (e' ∈ c
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
⇒ P[c])
BY
{ (Auto THEN Subst ⌈c = fset-remove(es-eq(es);e;c)+e ∈ Cut(X;f)⌉ 0⋅) }
1
.....equality.....
1. Info : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. P : Cut(X;f) ─→ ℙ
6. ∀c:Cut(X;f). SqStable(P[c])@i
7. P[{}]@i
8. ∀c:Cut(X;f). ∀e:E(X).
(P[c]
⇒ (P[c+e]) supposing (prior(X)(e) ∈ c supposing ↑e ∈b prior(X) and f e ∈ c supposing ¬((f e) = e ∈ E(X))))@i
9. es-eq(es) ∈ EqDecider(E(X))
10. n : ℕ
11. ∀n:ℕn. ∀c:Cut(X;f). ((||c|| ≤ n)
⇒ P[c])@i
12. c : Cut(X;f)@i
13. ||c|| ≤ n@i
14. ¬(c = {} ∈ fset(E(X)))
15. e : E(X)@i
16. e ∈ c@i
17. ∀e':E(X). (e' ∈ c
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X)))@i
18. ∀e':E(X). (e' ∈ c
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X)))@i
⊢ c = fset-remove(es-eq(es);e;c)+e ∈ Cut(X;f)
2
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. [P] : Cut(X;f) ─→ ℙ
6. ∀c:Cut(X;f). SqStable(P[c])@i
7. P[{}]@i
8. ∀c:Cut(X;f). ∀e:E(X).
(P[c]
⇒ (P[c+e]) supposing (prior(X)(e) ∈ c supposing ↑e ∈b prior(X) and f e ∈ c supposing ¬((f e) = e ∈ E(X))))@i
9. es-eq(es) ∈ EqDecider(E(X))
10. n : ℕ
11. ∀n:ℕn. ∀c:Cut(X;f). ((||c|| ≤ n)
⇒ P[c])@i
12. c : Cut(X;f)@i
13. ||c|| ≤ n@i
14. ¬(c = {} ∈ fset(E(X)))
15. e : E(X)@i
16. e ∈ c@i
17. ∀e':E(X). (e' ∈ c
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X)))@i
18. ∀e':E(X). (e' ∈ c
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X)))@i
⊢ P[fset-remove(es-eq(es);e;c)+e]
3
.....wf.....
1. Info : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. P : Cut(X;f) ─→ ℙ
6. ∀c:Cut(X;f). SqStable(P[c])@i
7. P[{}]@i
8. ∀c:Cut(X;f). ∀e:E(X).
(P[c]
⇒ (P[c+e]) supposing (prior(X)(e) ∈ c supposing ↑e ∈b prior(X) and f e ∈ c supposing ¬((f e) = e ∈ E(X))))@i
9. es-eq(es) ∈ EqDecider(E(X))
10. n : ℕ
11. ∀n:ℕn. ∀c:Cut(X;f). ((||c|| ≤ n)
⇒ P[c])@i
12. c : Cut(X;f)@i
13. ||c|| ≤ n@i
14. ¬(c = {} ∈ fset(E(X)))
15. e : E(X)@i
16. e ∈ c@i
17. ∀e':E(X). (e' ∈ c
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X)))@i
18. ∀e':E(X). (e' ∈ c
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X)))@i
19. z : Cut(X;f)
⊢ P[z] ∈ ℙ
Latex:
Latex:
.....assertion.....
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. [P] : Cut(X;f) {}\mrightarrow{} \mBbbP{}
6. \mforall{}c:Cut(X;f). SqStable(P[c])@i
7. P[\{\}]@i
8. \mforall{}c:Cut(X;f). \mforall{}e:E(X).
(P[c]
{}\mRightarrow{} (P[c+e]) supposing
(prior(X)(e) \mmember{} c supposing \muparrow{}e \mmember{}\msubb{} prior(X) and
f e \mmember{} c supposing \mneg{}((f e) = e)))@i
9. es-eq(es) \mmember{} EqDecider(E(X))
10. n : \mBbbN{}
11. \mforall{}n:\mBbbN{}n. \mforall{}c:Cut(X;f). ((||c|| \mleq{} n) {}\mRightarrow{} P[c])@i
12. c : Cut(X;f)@i
13. ||c|| \mleq{} n@i
14. \mneg{}(c = \{\})
\mvdash{} \mforall{}e:E(X)
(e \mmember{} c
{}\mRightarrow{} (\mforall{}e':E(X). (e' \mmember{} c {}\mRightarrow{} (e = (X-pred e')) {}\mRightarrow{} (e' = e)))
{}\mRightarrow{} (\mforall{}e':E(X). (e' \mmember{} c {}\mRightarrow{} (e = (f e')) {}\mRightarrow{} (e' = e)))
{}\mRightarrow{} P[c])
By
Latex:
(Auto THEN Subst \mkleeneopen{}c = fset-remove(es-eq(es);e;c)+e\mkleeneclose{} 0\mcdot{})
Home
Index