Step
*
of Lemma
es-interface-local-pred-bool
∀[Info:Type]
∀P:es:EO+(Info) ─→ E ─→ 𝔹
∃X:EClass({e':E| (e' <loc e) ∧ (↑(P es e')) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(P es e''))))} )
∀es:EO+(Info). ∀e:E.
((↑e ∈b X
⇐⇒ ∃a:E. ((a <loc e) ∧ (↑(P es a)))) ∧ es-p-local-pred(es;λe.(↑(P es e))) e X(e) supposing ↑e ∈b X)
BY
{ ((InstLemma `es-local-pred-property` []
THEN ParallelLast'
THEN Auto
THEN ((With ⌈local-pred-class(P)⌉ (D 0)⋅ THENA Auto)
THENM (ParallelOp -2 THEN ParallelLast THEN (InstHyp [⌈P es⌉] (-1)⋅ THENA Auto))
))
THEN MoveToConcl (-1)
THEN (RepUR ``local-pred-class in-eclass eclass-val es-p-local-pred`` 0⋅ THEN RepUR ``can-apply do-apply`` 0⋅)
THEN GenConclAtAddr [1;1;1;1;1]
THEN D -2
THEN Reduce 0
THEN Auto) }
Latex:
Latex:
\mforall{}[Info:Type]
\mforall{}P:es:EO+(Info) {}\mrightarrow{} E {}\mrightarrow{} \mBbbB{}
\mexists{}X:EClass(\{e':E|
(e' <loc e)
\mwedge{} (\muparrow{}(P es e'))
\mwedge{} (\mforall{}e'':E. ((e' <loc e'') {}\mRightarrow{} (e'' <loc e) {}\mRightarrow{} (\mneg{}\muparrow{}(P es e''))))\} )
\mforall{}es:EO+(Info). \mforall{}e:E.
((\muparrow{}e \mmember{}\msubb{} X \mLeftarrow{}{}\mRightarrow{} \mexists{}a:E. ((a <loc e) \mwedge{} (\muparrow{}(P es a))))
\mwedge{} es-p-local-pred(es;\mlambda{}e.(\muparrow{}(P es e))) e X(e) supposing \muparrow{}e \mmember{}\msubb{} X)
By
Latex:
((InstLemma `es-local-pred-property` []
THEN ParallelLast'
THEN Auto
THEN ((With \mkleeneopen{}local-pred-class(P)\mkleeneclose{} (D 0)\mcdot{} THENA Auto)
THENM (ParallelOp -2 THEN ParallelLast THEN (InstHyp [\mkleeneopen{}P es\mkleeneclose{}] (-1)\mcdot{} THENA Auto))
))
THEN MoveToConcl (-1)
THEN (RepUR ``local-pred-class in-eclass eclass-val es-p-local-pred`` 0\mcdot{}
THEN RepUR ``can-apply do-apply`` 0\mcdot{}
)
THEN GenConclAtAddr [1;1;1;1;1]
THEN D -2
THEN Reduce 0
THEN Auto)
Home
Index