Step
*
1
1
of Lemma
es-interface-predecessors-nil
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. e : E
5. ¬↑first(e)
6. u : {a:E(X)| loc(a) = loc(pred(e)) ∈ Id}
7. v : {a:E(X)| loc(a) = loc(pred(e)) ∈ Id} List
8. eclass-events(es;X;≤loc(pred(e))) = [u / v] ∈ ({a:E(X)| loc(a) = loc(pred(e)) ∈ Id} List)@i
9. (u ∈ eclass-events(es;X;≤loc(pred(e))))
⇐⇒ {(↑u ∈b X) ∧ (u ∈ ≤loc(pred(e)))}
⊢ ∃e':E. ((e' <loc e) ∧ (↑e' ∈b X))
BY
{ (D (-1) THEN Thin (-1) THEN D -1) }
1
.....antecedent.....
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. e : E
5. ¬↑first(e)
6. u : {a:E(X)| loc(a) = loc(pred(e)) ∈ Id}
7. v : {a:E(X)| loc(a) = loc(pred(e)) ∈ Id} List
8. eclass-events(es;X;≤loc(pred(e))) = [u / v] ∈ ({a:E(X)| loc(a) = loc(pred(e)) ∈ Id} List)@i
⊢ (u ∈ eclass-events(es;X;≤loc(pred(e))))
2
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. e : E
5. ¬↑first(e)
6. u : {a:E(X)| loc(a) = loc(pred(e)) ∈ Id}
7. v : {a:E(X)| loc(a) = loc(pred(e)) ∈ Id} List
8. eclass-events(es;X;≤loc(pred(e))) = [u / v] ∈ ({a:E(X)| loc(a) = loc(pred(e)) ∈ Id} List)@i
9. {(↑u ∈b X) ∧ (u ∈ ≤loc(pred(e)))}
⊢ ∃e':E. ((e' <loc e) ∧ (↑e' ∈b X))
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. e : E
5. \mneg{}\muparrow{}first(e)
6. u : \{a:E(X)| loc(a) = loc(pred(e))\}
7. v : \{a:E(X)| loc(a) = loc(pred(e))\} List
8. eclass-events(es;X;\mleq{}loc(pred(e))) = [u / v]@i
9. (u \mmember{} eclass-events(es;X;\mleq{}loc(pred(e)))) \mLeftarrow{}{}\mRightarrow{} \{(\muparrow{}u \mmember{}\msubb{} X) \mwedge{} (u \mmember{} \mleq{}loc(pred(e)))\}
\mvdash{} \mexists{}e':E. ((e' <loc e) \mwedge{} (\muparrow{}e' \mmember{}\msubb{} X))
By
Latex:
(D (-1) THEN Thin (-1) THEN D -1)
Home
Index