Step
*
of Lemma
filter-interface-predecessors-lower-bound2
∀[Info:Type]
∀es:EO+(Info)
∀[T:Type]
∀X:EClass(T). ∀P:E(X) ─→ 𝔹.
∀[R:Id ─→ E(X) ─→ ℙ]
∀L:Id List
((∀x∈L.∃y:E(X). (R[x;y] ∧ (↑P[y])))
⇒ (∃e:{e:E(X)| ↑P[e]} . (||L|| ≤ ||filter(λe.P[e];≤(X)(e))||))) supposing
(0 < ||L|| and
no_repeats(Id;L))
supposing ∀x1,x2:Id. ∀y:E(X). (R[x1;y]
⇒ R[x2;y]
⇒ (x1 = x2 ∈ Id))
supposing ∀e1,e2:E(X). (loc(e1) = loc(e2) ∈ Id) supposing ((↑P[e2]) and (↑P[e1]))
BY
{ WithCumulativity((Auto
THEN (InstLemma `l_all_exists_injection` [⌈Id⌉;⌈E(X)⌉;⌈R⌉;⌈λ2e.↑P[e]⌉;⌈L⌉]⋅ THENA Auto)
THEN D -1
THEN UsingVars [`f'] (BLemma `filter-interface-predecessors-lower-bound3`)
THEN Auto)) }
1
1. Info : Type
2. es : EO+(Info)@i'
3. T : Type
4. X : EClass(T)@i'
5. P : E(X) ─→ 𝔹@i
6. ∀e1,e2:E(X). (loc(e1) = loc(e2) ∈ Id) supposing ((↑P[e2]) and (↑P[e1]))
7. R : Id ─→ E(X) ─→ ℙ
8. ∀x1,x2:Id. ∀y:E(X). (R[x1;y]
⇒ R[x2;y]
⇒ (x1 = x2 ∈ Id))
9. L : Id List@i
10. no_repeats(Id;L)
11. 0 < ||L||
12. (∀x∈L.∃y:E(X). (R[x;y] ∧ (↑P[y])))@i
13. f : ℕ||L|| ─→ {y:E(X)| ↑P[y]}
14. Inj(ℕ||L||;{y:E(X)| ↑P[y]} ;f)
15. i : ℕ||L||@i
16. j : ℕ||L||@i
⊢ loc(f i) = loc(f j) ∈ Id
Latex:
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info)
\mforall{}[T:Type]
\mforall{}X:EClass(T). \mforall{}P:E(X) {}\mrightarrow{} \mBbbB{}.
\mforall{}[R:Id {}\mrightarrow{} E(X) {}\mrightarrow{} \mBbbP{}]
\mforall{}L:Id List
((\mforall{}x\mmember{}L.\mexists{}y:E(X). (R[x;y] \mwedge{} (\muparrow{}P[y])))
{}\mRightarrow{} (\mexists{}e:\{e:E(X)| \muparrow{}P[e]\} . (||L|| \mleq{} ||filter(\mlambda{}e.P[e];\mleq{}(X)(e))||))) supposing
(0 < ||L|| and
no\_repeats(Id;L))
supposing \mforall{}x1,x2:Id. \mforall{}y:E(X). (R[x1;y] {}\mRightarrow{} R[x2;y] {}\mRightarrow{} (x1 = x2))
supposing \mforall{}e1,e2:E(X). (loc(e1) = loc(e2)) supposing ((\muparrow{}P[e2]) and (\muparrow{}P[e1]))
By
Latex:
WithCumulativity((Auto
THEN (InstLemma `l\_all\_exists\_injection` [\mkleeneopen{}Id\mkleeneclose{};\mkleeneopen{}E(X)\mkleeneclose{};\mkleeneopen{}R\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}e.\muparrow{}P[e]\mkleeneclose{};\mkleeneopen{}L\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN D -1
THEN UsingVars [`f'] (BLemma `filter-interface-predecessors-lower-bound3`)
THEN Auto))
Home
Index