Step
*
of Lemma
fpf-join-list-ap-disjoint
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[L:a:A fp-> B[a] List]. ∀[x:A].
(∀[f:a:A fp-> B[a]]. (⊕(L)(x) = f(x) ∈ B[x]) supposing ((↑x ∈ dom(f)) and (f ∈ L))) supposing
((∀f,g∈L. ∀x:A. (¬((↑x ∈ dom(f)) ∧ (↑x ∈ dom(g))))) and
(↑x ∈ dom(⊕(L))))
BY
{ (InstLemma `fpf-join-list-ap` []
THEN RepeatFor 5 ((ParallelLast THEN Thin (-3)))
THEN (D 0 THENA Auto)
THEN (D -2 THENA Auto)
THEN D -1
THEN Auto) }
1
1. A : Type
2. eq : EqDecider(A)
3. B : A ─→ Type
4. L : a:A fp-> B[a] List
5. x : A
6. ↑x ∈ dom(⊕(L))
7. i : ℕ||L||
8. ↑x ∈ dom(L[i])
9. ⊕(L)(x) = L[i](x) ∈ B[x]
10. (∀f,g∈L. ∀x:A. (¬((↑x ∈ dom(f)) ∧ (↑x ∈ dom(g)))))
11. f : a:A fp-> B[a]
12. (f ∈ L)
13. ↑x ∈ dom(f)
⊢ ⊕(L)(x) = f(x) ∈ B[x]
Latex:
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[L:a:A fp-> B[a] List]. \mforall{}[x:A].
(\mforall{}[f:a:A fp-> B[a]]. (\moplus{}(L)(x) = f(x)) supposing ((\muparrow{}x \mmember{} dom(f)) and (f \mmember{} L))) supposing
((\mforall{}f,g\mmember{}L. \mforall{}x:A. (\mneg{}((\muparrow{}x \mmember{} dom(f)) \mwedge{} (\muparrow{}x \mmember{} dom(g))))) and
(\muparrow{}x \mmember{} dom(\moplus{}(L))))
By
(InstLemma `fpf-join-list-ap` []
THEN RepeatFor 5 ((ParallelLast THEN Thin (-3)))
THEN (D 0 THENA Auto)
THEN (D -2 THENA Auto)
THEN D -1
THEN Auto)
Home
Index