Step
*
of Lemma
fpf-join-wf
∀[A:Type]. ∀[B,C,D:A ─→ Type]. ∀[f:a:A fp-> B[a]]. ∀[g:a:A fp-> C[a]]. ∀[eq:EqDecider(A)].
(f ⊕ g ∈ a:A fp-> D[a]) supposing
((∀a:A. ((↑a ∈ dom(g))
⇒ (C[a] ⊆r D[a]))) and
(∀a:A. ((↑a ∈ dom(f))
⇒ (B[a] ⊆r D[a]))))
BY
{ ((UnivCD THENA Auto)
THEN DVar `f'
THEN DVar `g'
THEN (RepUR ``fpf-join fpf fpf-dom fpf-cap`` 0 THEN All (RepUR ``fpf-dom``))
THEN Auto
THEN Thin (-1)
THEN ((RWW "member_append member_filter" (-1) THENM Reduce (-1)) THENA Auto)
THEN D -1
THEN Auto) }
Latex:
\mforall{}[A:Type]. \mforall{}[B,C,D:A {}\mrightarrow{} Type]. \mforall{}[f:a:A fp-> B[a]]. \mforall{}[g:a:A fp-> C[a]]. \mforall{}[eq:EqDecider(A)].
(f \moplus{} g \mmember{} a:A fp-> D[a]) supposing
((\mforall{}a:A. ((\muparrow{}a \mmember{} dom(g)) {}\mRightarrow{} (C[a] \msubseteq{}r D[a]))) and
(\mforall{}a:A. ((\muparrow{}a \mmember{} dom(f)) {}\mRightarrow{} (B[a] \msubseteq{}r D[a]))))
By
((UnivCD THENA Auto)
THEN DVar `f'
THEN DVar `g'
THEN (RepUR ``fpf-join fpf fpf-dom fpf-cap`` 0 THEN All (RepUR ``fpf-dom``))
THEN Auto
THEN Thin (-1)
THEN ((RWW "member\_append member\_filter" (-1) THENM Reduce (-1)) THENA Auto)
THEN D -1
THEN Auto)
Home
Index