Nuprl Lemma : fpf-map_wf

[A,C:Type]. ∀[B:A ─→ Type]. ∀[x:a:A fp-> B[a]]. ∀[f:a:{a:A| (a ∈ fpf-domain(x))}  ─→ B[a] ─→ C].
  (fpf-map(a,v.f[a;v];x) ∈ List)


Proof




Definitions occuring in Statement :  fpf-map: fpf-map(a,v.f[a; v];x) fpf-domain: fpf-domain(f) fpf: a:A fp-> B[a] l_member: (x ∈ l) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] universe: Type
Lemmas :  l_member_wf fpf-domain_wf subtype-fpf2 top_wf subtype_top fpf_wf map-wf2
\mforall{}[A,C:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[x:a:A  fp->  B[a]].  \mforall{}[f:a:\{a:A|  (a  \mmember{}  fpf-domain(x))\}    {}\mrightarrow{}  B[a]  {}\mrightarrow{}  C].
    (fpf-map(a,v.f[a;v];x)  \mmember{}  C  List)



Date html generated: 2015_07_17-AM-11_10_23
Last ObjectModification: 2015_01_28-AM-07_44_36

Home Index