Nuprl Lemma : fpf-single-dom-sq

[A:Type]. ∀[eq:EqDecider(A)]. ∀[x,y:A]. ∀[v:Top].  (x ∈ dom(y v) eq x)


Proof




Definitions occuring in Statement :  fpf-single: v fpf-dom: x ∈ dom(f) deq: EqDecider(T) uall: [x:A]. B[x] top: Top apply: a universe: Type sqequal: t
Lemmas :  deq_member_cons_lemma deq_member_nil_lemma bor-bfalse top_wf deq_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x,y:A].  \mforall{}[v:Top].    (x  \mmember{}  dom(y  :  v)  \msim{}  eq  y  x)



Date html generated: 2015_07_17-AM-11_12_45
Last ObjectModification: 2015_01_28-AM-07_41_10

Home Index