Nuprl Lemma : fpf-single-dom-sq
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[x,y:A]. ∀[v:Top]. (x ∈ dom(y : v) ~ eq y x)
Proof
Definitions occuring in Statement :
fpf-single: x : v
,
fpf-dom: x ∈ dom(f)
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
apply: f a
,
universe: Type
,
sqequal: s ~ t
Lemmas :
deq_member_cons_lemma,
deq_member_nil_lemma,
bor-bfalse,
top_wf,
deq_wf
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[x,y:A]. \mforall{}[v:Top]. (x \mmember{} dom(y : v) \msim{} eq y x)
Date html generated:
2015_07_17-AM-11_12_45
Last ObjectModification:
2015_01_28-AM-07_41_10
Home
Index