Nuprl Lemma : bor-bfalse

[b:𝔹]. (b ∨bff b)


Proof




Definitions occuring in Statement :  bor: p ∨bq bfalse: ff bool: 𝔹 uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bor: p ∨bq ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination because_Cache voidElimination sqequalAxiom

Latex:
\mforall{}[b:\mBbbB{}].  (b  \mvee{}\msubb{}ff  \msim{}  b)



Date html generated: 2017_04_14-AM-07_30_36
Last ObjectModification: 2017_02_27-PM-02_59_16

Theory : bool_1


Home Index