Step * 2 of Lemma fpf-sub-functionality2


1. Type
2. A' Type
3. strong-subtype(A;A')
4. A ─→ Type
5. A' ─→ Type
6. eq EqDecider(A)
7. eq' EqDecider(A')
8. a:A fp-> B[a]
9. a:A fp-> B[a]
10. ∀a:A. (B[a] ⊆C[a])
11. ∀x:A. ((↑x ∈ dom(f))  ((↑x ∈ dom(g)) c∧ (f(x) g(x) ∈ B[x])))
12. A'@i
13. ↑x ∈ dom(f)@i
14. x ∈ A
15. (↑x ∈ dom(g)) c∧ (f(x) g(x) ∈ B[x])
⊢ (↑x ∈ dom(g)) c∧ (f(x) g(x) ∈ C[x])
BY
(D (-1) THEN 0) }

1
1. Type
2. A' Type
3. strong-subtype(A;A')
4. A ─→ Type
5. A' ─→ Type
6. eq EqDecider(A)
7. eq' EqDecider(A')
8. a:A fp-> B[a]
9. a:A fp-> B[a]
10. ∀a:A. (B[a] ⊆C[a])
11. ∀x:A. ((↑x ∈ dom(f))  ((↑x ∈ dom(g)) c∧ (f(x) g(x) ∈ B[x])))
12. A'@i
13. ↑x ∈ dom(f)@i
14. x ∈ A
15. ↑x ∈ dom(g)
16. f(x) g(x) ∈ B[x]
⊢ ↑x ∈ dom(g)

2
1. Type
2. A' Type
3. strong-subtype(A;A')
4. A ─→ Type
5. A' ─→ Type
6. eq EqDecider(A)
7. eq' EqDecider(A')
8. a:A fp-> B[a]
9. a:A fp-> B[a]
10. ∀a:A. (B[a] ⊆C[a])
11. ∀x:A. ((↑x ∈ dom(f))  ((↑x ∈ dom(g)) c∧ (f(x) g(x) ∈ B[x])))
12. A'@i
13. ↑x ∈ dom(f)@i
14. x ∈ A
15. ↑x ∈ dom(g)
16. f(x) g(x) ∈ B[x]
17. ↑x ∈ dom(g)
⊢ f(x) g(x) ∈ C[x]


Latex:



1.  A  :  Type
2.  A'  :  Type
3.  strong-subtype(A;A')
4.  B  :  A  {}\mrightarrow{}  Type
5.  C  :  A'  {}\mrightarrow{}  Type
6.  eq  :  EqDecider(A)
7.  eq'  :  EqDecider(A')
8.  f  :  a:A  fp->  B[a]
9.  g  :  a:A  fp->  B[a]
10.  \mforall{}a:A.  (B[a]  \msubseteq{}r  C[a])
11.  \mforall{}x:A.  ((\muparrow{}x  \mmember{}  dom(f))  {}\mRightarrow{}  ((\muparrow{}x  \mmember{}  dom(g))  c\mwedge{}  (f(x)  =  g(x))))
12.  x  :  A'@i
13.  \muparrow{}x  \mmember{}  dom(f)@i
14.  x  \mmember{}  A
15.  (\muparrow{}x  \mmember{}  dom(g))  c\mwedge{}  (f(x)  =  g(x))
\mvdash{}  (\muparrow{}x  \mmember{}  dom(g))  c\mwedge{}  (f(x)  =  g(x))


By

(D  (-1)  THEN  D  0)




Home Index