Step * 1 2 1 1 of Lemma fpf-vals-nil

.....assertion..... 
1. Type
2. eq EqDecider(A)
3. A ─→ Type
4. A ─→ 𝔹
5. List
6. f1 x:{x:A| (x ∈ d)}  ─→ B[x]
7. A
8. ¬↑a ∈ dom(<d, f1>)
9. ∀b:A. (↑(P b) ⇐⇒ a ∈ A)
10. ∀L:A List. (no_repeats(A;L)  (filter(P;L) if a ∈b L) then [a] else [] fi  ∈ (A List)))
11. filter(P;remove-repeats(eq;d)) if a ∈b remove-repeats(eq;d)) then [a] else [] fi  ∈ (A List)
⊢ filter(P;remove-repeats(eq;d)) [] ∈ (A List)
BY
((MoveToConcl (-1)) THEN SplitOnConclITE THEN Auto) }

1
1. Type
2. eq EqDecider(A)
3. A ─→ Type
4. A ─→ 𝔹
5. List
6. f1 x:{x:A| (x ∈ d)}  ─→ B[x]
7. A
8. ¬↑a ∈ dom(<d, f1>)
9. ∀b:A. (↑(P b) ⇐⇒ a ∈ A)
10. ∀L:A List. (no_repeats(A;L)  (filter(P;L) if a ∈b L) then [a] else [] fi  ∈ (A List)))
11. (a ∈ remove-repeats(eq;d))
12. filter(P;remove-repeats(eq;d)) [a] ∈ (A List)@i
⊢ filter(P;remove-repeats(eq;d)) [] ∈ (A List)


Latex:


.....assertion..... 
1.  A  :  Type
2.  eq  :  EqDecider(A)
3.  B  :  A  {}\mrightarrow{}  Type
4.  P  :  A  {}\mrightarrow{}  \mBbbB{}
5.  d  :  A  List
6.  f1  :  x:\{x:A|  (x  \mmember{}  d)\}    {}\mrightarrow{}  B[x]
7.  a  :  A
8.  \mneg{}\muparrow{}a  \mmember{}  dom(<d,  f1>)
9.  \mforall{}b:A.  (\muparrow{}(P  b)  \mLeftarrow{}{}\mRightarrow{}  b  =  a)
10.  \mforall{}L:A  List.  (no\_repeats(A;L)  {}\mRightarrow{}  (filter(P;L)  =  if  a  \mmember{}\msubb{}  L)  then  [a]  else  []  fi  ))
11.  filter(P;remove-repeats(eq;d))  =  if  a  \mmember{}\msubb{}  remove-repeats(eq;d))  then  [a]  else  []  fi 
\mvdash{}  filter(P;remove-repeats(eq;d))  =  []


By

((MoveToConcl  (-1))  THEN  SplitOnConclITE  THEN  Auto)




Home Index