Nuprl Lemma : is-interface-conditional-implies
∀[Info:Type]. ∀es:EO+(Info). ∀X,Y:EClass(Top). ∀e:E.  (↑e ∈b X) ∨ (↑e ∈b Y) supposing ↑e ∈b [X?Y]
Proof
Definitions occuring in Statement : 
cond-class: [X?Y]
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
universe: Type
Lemmas : 
assert_witness, 
in-eclass_wf, 
cond-class_wf, 
top_wf, 
is-interface-conditional, 
assert_wf, 
es-E_wf, 
event-ordering+_subtype, 
eclass_wf, 
event-ordering+_wf
\mforall{}[Info:Type].  \mforall{}es:EO+(Info).  \mforall{}X,Y:EClass(Top).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X)  \mvee{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  supposing  \muparrow{}e  \mmember{}\msubb{}  [X?Y]
Date html generated:
2015_07_17-PM-00_51_41
Last ObjectModification:
2015_01_27-PM-11_01_43
Home
Index