Step
*
2
of Lemma
iterated_classrel_invariant1
.....falsecase.....
1. Info : Type
2. A : Type
3. S : Type
4. init : Id ─→ bag(S)
5. f : A ─→ S ─→ S
6. X : EClass(A)
7. es : EO+(Info)@i'
8. P : S ─→ ℙ
9. ∀s:S. Dec(P[s])@i
10. e : E@i
11. ∀e1:E
((e1 < e)
⇒ (∀v:S
((∀s:S. (s ↓∈ init loc(e1)
⇒ P[s]))
⇒ (∀a:A. ∀s:S. (P[s]
⇒ P[f a s]))
⇒ iterated_classrel(es;S;A;f;init;X;e1;v)
⇒ P[v])))
12. v : S@i
13. ∀s:S. (s ↓∈ init loc(e)
⇒ P[s])@i
14. ∀a:A. ∀s:S. (P[s]
⇒ P[f a s])@i
15. z : S@i
16. iterated_classrel(es;S;A;f;init;X;pred(e);z)@i
17. (∃a:A. (a ∈ X(e) ∧ (v = (f a z) ∈ S))) ∨ ((∀a:A. (¬a ∈ X(e))) ∧ (v = z ∈ S))@i
18. ¬↑first(e)
⊢ P[v]
BY
{ ((InstHyp [⌈pred(e)⌉;⌈z⌉] (-8)⋅ THENA Auto)
THEN D (-3)
THEN Auto
THEN ExRepD
THEN InstHyp [⌈a⌉;⌈z⌉] (-8)⋅
THEN Auto) }
Latex:
.....falsecase.....
1. Info : Type
2. A : Type
3. S : Type
4. init : Id {}\mrightarrow{} bag(S)
5. f : A {}\mrightarrow{} S {}\mrightarrow{} S
6. X : EClass(A)
7. es : EO+(Info)@i'
8. P : S {}\mrightarrow{} \mBbbP{}
9. \mforall{}s:S. Dec(P[s])@i
10. e : E@i
11. \mforall{}e1:E
((e1 < e)
{}\mRightarrow{} (\mforall{}v:S
((\mforall{}s:S. (s \mdownarrow{}\mmember{} init loc(e1) {}\mRightarrow{} P[s]))
{}\mRightarrow{} (\mforall{}a:A. \mforall{}s:S. (P[s] {}\mRightarrow{} P[f a s]))
{}\mRightarrow{} iterated\_classrel(es;S;A;f;init;X;e1;v)
{}\mRightarrow{} P[v])))
12. v : S@i
13. \mforall{}s:S. (s \mdownarrow{}\mmember{} init loc(e) {}\mRightarrow{} P[s])@i
14. \mforall{}a:A. \mforall{}s:S. (P[s] {}\mRightarrow{} P[f a s])@i
15. z : S@i
16. iterated\_classrel(es;S;A;f;init;X;pred(e);z)@i
17. (\mexists{}a:A. (a \mmember{} X(e) \mwedge{} (v = (f a z)))) \mvee{} ((\mforall{}a:A. (\mneg{}a \mmember{} X(e))) \mwedge{} (v = z))@i
18. \mneg{}\muparrow{}first(e)
\mvdash{} P[v]
By
((InstHyp [\mkleeneopen{}pred(e)\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{}] (-8)\mcdot{} THENA Auto)
THEN D (-3)
THEN Auto
THEN ExRepD
THEN InstHyp [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{}] (-8)\mcdot{}
THEN Auto)
Home
Index