Step
*
2
1
2
1
1
of Lemma
lconnects-transitive
1. u : IdLnk@i
2. v : IdLnk List@i
3. ∀q:IdLnk List. ∀i,j,k:Id. (∃r:IdLnk List. lconnects(r;i;k)) supposing (lconnects(q;j;k) and lconnects(v;i;j))@i
4. q : IdLnk List@i
5. i : Id@i
6. j : Id@i
7. k : Id@i
8. lpath([u / v])
9. ((||v|| + 1) = 0 ∈ ℤ)
⇒ (i = j ∈ Id)
10. lconnects(q;j;k)
11. i = source(u) ∈ Id
12. j = destination(last([u / v])) ∈ Id
13. lconnects([];destination(u);k)
⊢ lconnects([u];i;k)
BY
{ ((ParallelOp (-1)) THEN All Reduce THEN Auto) }
1
1. u : IdLnk@i
2. v : IdLnk List@i
3. ∀q:IdLnk List. ∀i,j,k:Id. (∃r:IdLnk List. lconnects(r;i;k)) supposing (lconnects(q;j;k) and lconnects(v;i;j))@i
4. q : IdLnk List@i
5. i : Id@i
6. j : Id@i
7. k : Id@i
8. lpath([u / v])
9. ((||v|| + 1) = 0 ∈ ℤ)
⇒ (i = j ∈ Id)
10. lconnects(q;j;k)
11. i = source(u) ∈ Id
12. j = destination(last([u / v])) ∈ Id
13. lpath([])
14. (0 = 0 ∈ ℤ)
⇒ (destination(u) = k ∈ Id)
15. (¬(0 = 0 ∈ ℤ))
⇒ ((destination(u) = source(hd([])) ∈ Id) ∧ (k = destination(last([])) ∈ Id))
⊢ lpath([u])
Latex:
1. u : IdLnk@i
2. v : IdLnk List@i
3. \mforall{}q:IdLnk List. \mforall{}i,j,k:Id.
(\mexists{}r:IdLnk List. lconnects(r;i;k)) supposing (lconnects(q;j;k) and lconnects(v;i;j))@i
4. q : IdLnk List@i
5. i : Id@i
6. j : Id@i
7. k : Id@i
8. lpath([u / v])
9. ((||v|| + 1) = 0) {}\mRightarrow{} (i = j)
10. lconnects(q;j;k)
11. i = source(u)
12. j = destination(last([u / v]))
13. lconnects([];destination(u);k)
\mvdash{} lconnects([u];i;k)
By
((ParallelOp (-1)) THEN All Reduce THEN Auto)
Home
Index