Step
*
of Lemma
local-class-predicate-property
∀[Info,A:Type]. ∀[X:EClass(A)]. ∀[F1,F2:Id ─→ hdataflow(Info;A)].
(local-class-predicate{i:l}(F2;Info;A;X)) supposing
(local-class-predicate{i:l}(F1;Info;A;X) and
(∀i:Id. (F1[i] = F2[i] ∈ hdataflow(Info;A))))
BY
{ (Auto
THEN All (Unfold `local-class-predicate`)
THEN Auto
THEN (InstHyp [⌈loc(e)⌉] (-4)⋅ THENA Auto)
THEN (InstHyp [⌈es⌉;⌈e⌉] (-4)⋅ THENA Auto)
THEN RepUR ``so_apply`` (-2)
THEN RevHypSubst' (-2) 0
THEN Auto) }
Latex:
\mforall{}[Info,A:Type]. \mforall{}[X:EClass(A)]. \mforall{}[F1,F2:Id {}\mrightarrow{} hdataflow(Info;A)].
(local-class-predicate\{i:l\}(F2;Info;A;X)) supposing
(local-class-predicate\{i:l\}(F1;Info;A;X) and
(\mforall{}i:Id. (F1[i] = F2[i])))
By
(Auto
THEN All (Unfold `local-class-predicate`)
THEN Auto
THEN (InstHyp [\mkleeneopen{}loc(e)\mkleeneclose{}] (-4)\mcdot{} THENA Auto)
THEN (InstHyp [\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{}] (-4)\mcdot{} THENA Auto)
THEN RepUR ``so\_apply`` (-2)
THEN RevHypSubst' (-2) 0
THEN Auto)
Home
Index