Step
*
of Lemma
local-prior-state-accumulate
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A,T:Type]. ∀[X:EClass(A)]. ∀[base:T]. ∀[f:T ─→ A ─→ T]. ∀[e:E].
(prior-state(f;base;X;e)
= accumulate (with value x and list item a):
f x a
over list:
X(<e)
with starting value:
base)
∈ T)
BY
{ (Auto
THEN (MoveToConcl (-1))
THEN CausalInd'
THEN (RWO "es-prior-interface-vals-property" 0
THENM RecUnfold `es-local-prior-state` 0
THENM SplitOnConclITE
THENM Reduce 0)
THEN Auto) }
1
.....truecase.....
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. T : Type
5. X : EClass(A)
6. base : T
7. f : T ─→ A ─→ T
8. e : E@i
9. ∀e1:E
((e1 < e)
⇒ (prior-state(f;base;X;e1)
= accumulate (with value x and list item a):
f x a
over list:
X(<e1)
with starting value:
base)
∈ T))
10. ↑e ∈b prior(X)
⊢ (f prior-state(f;base;X;prior(X)(e)) X(prior(X)(e)))
= accumulate (with value x and list item a):
f x a
over list:
X(<prior(X)(e)) @ [X(prior(X)(e))]
with starting value:
base)
∈ T
Latex:
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[A,T:Type]. \mforall{}[X:EClass(A)]. \mforall{}[base:T]. \mforall{}[f:T {}\mrightarrow{} A {}\mrightarrow{} T]. \mforall{}[e:E].
(prior-state(f;base;X;e)
= accumulate (with value x and list item a):
f x a
over list:
X(<e)
with starting value:
base))
By
Latex:
(Auto
THEN (MoveToConcl (-1))
THEN CausalInd'
THEN (RWO "es-prior-interface-vals-property" 0
THENM RecUnfold `es-local-prior-state` 0
THENM SplitOnConclITE
THENM Reduce 0)
THEN Auto)
Home
Index