Nuprl Lemma : locknd-spread_wf

[T:i:Id ─→ k:{k:Knd| ↑hasloc(k;i)}  ─→ Type]. ∀[P:i:Id ─→ k:{k:Knd| ↑hasloc(k;i)}  ─→ T[i;k]]. ∀[ik:LocKnd].
  (let i,k:LocKnd ik in P[i;k] ∈ T[fst(ik);snd(ik)])


Proof




Definitions occuring in Statement :  locknd-spread: let i,k:LocKnd ik in P[i; k] LocKnd: LocKnd hasloc: hasloc(k;i) Knd: Knd Id: Id assert: b uall: [x:A]. B[x] so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] universe: Type
Lemmas :  assert_wf hasloc_wf set_wf Knd_wf Id_wf
\mforall{}[T:i:Id  {}\mrightarrow{}  k:\{k:Knd|  \muparrow{}hasloc(k;i)\}    {}\mrightarrow{}  Type].  \mforall{}[P:i:Id  {}\mrightarrow{}  k:\{k:Knd|  \muparrow{}hasloc(k;i)\}    {}\mrightarrow{}  T[i;k]].
\mforall{}[ik:LocKnd].
    (let  i,k:LocKnd  =  ik  in  P[i;k]  \mmember{}  T[fst(ik);snd(ik)])



Date html generated: 2015_07_17-AM-09_14_23
Last ObjectModification: 2015_01_28-AM-07_54_57

Home Index